Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (97) GO Terms (4) Nucleotides (125) Proteins (64) Interactants (443) Wiki
XB-GENEPAGE-479924

Papers associated with slc12a1



???displayGene.coCitedPapers???
11 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Isoforms of the Na-K-2Cl cotransporter in murine TAL II. Functional characterization and activation by cAMP., Plata C, Mount DB, Rubio V, Hebert SC, Gamba G., Am J Physiol. March 1, 1999; 276 (3): F359-66.


Isoforms of the Na-K-2Cl cotransporter in murine TAL I. Molecular characterization and intrarenal localization., Mount DB, Baekgaard A, Hall AE, Plata C, Xu J, Beier DR, Gamba G, Hebert SC., Am J Physiol. March 1, 1999; 276 (3): F347-58.


Alternatively spliced isoform of apical Na(+)-K(+)-Cl(-) cotransporter gene encodes a furosemide-sensitive Na(+)-Cl(-)cotransporter., Plata C, Meade P, Hall A, Welch RC, Vázquez N, Hebert SC, Gamba G., Am J Physiol Renal Physiol. April 1, 2001; 280 (4): F574-82.


Serum- and glucocorticoid-dependent kinase, cell volume, and the regulation of epithelial transport., Fillon S, Wärntges S, Matskevitch J, Moschen I, Setiawan I, Gamper N, Feng YX, Stegen C, Friedrich B, Waldegger S, Bröer S, Wagner CA, Huber SM, Klingel K, Vereninov A, Lang F., Comp Biochem Physiol A Mol Integr Physiol. October 1, 2001; 130 (3): 367-76.


Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion., Estévez R, Boettger T, Stein V, Birkenhäger R, Otto E, Hildebrandt F, Jentsch TJ., Nature. November 29, 2001; 414 (6863): 558-61.


Spatially distributed alternative splice variants of the renal Na-K-Cl cotransporter exhibit dramatically different affinities for the transported ions., Giménez I, Isenring P, Forbush B., J Biol Chem. March 15, 2002; 277 (11): 8767-70.


Barttin increases surface expression and changes current properties of ClC-K channels., Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW., Pflugers Arch. June 1, 2002; 444 (3): 411-8.


Functional and molecular characterization of the shark renal Na-K-Cl cotransporter: novel aspects., Gagnon E, Forbush B, Flemmer AW, Giménez I, Caron L, Isenring P., Am J Physiol Renal Physiol. November 1, 2002; 283 (5): F1046-55.


Functional comparison of renal Na-K-Cl cotransporters between distant species., Gagnon E, Forbush B, Caron L, Isenring P., Am J Physiol Cell Physiol. February 1, 2003; 284 (2): C365-70.


Mutations in the human Na-K-2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters., Starremans PG, Kersten FF, Knoers NV, van den Heuvel LP, Bindels RJ., J Am Soc Nephrol. June 1, 2003; 14 (6): 1419-26.


Ammonium transport and pH regulation by K(+)-Cl(-) cotransporters., Bergeron MJ, Gagnon E, Wallendorff B, Lapointe JY, Isenring P., Am J Physiol Renal Physiol. July 1, 2003; 285 (1): F68-78.


Dimeric architecture of the human bumetanide-sensitive Na-K-Cl Co-transporter., Starremans PG, Kersten FF, Van Den Heuvel LP, Knoers NV, Bindels RJ., J Am Soc Nephrol. December 1, 2003; 14 (12): 3039-46.


Molecular mechanisms of Cl- transport by the renal Na(+)-K(+)-Cl- cotransporter. Identification of an intracellular locus that may form part of a high affinity Cl(-)-binding site., Gagnon E, Bergeron MJ, Brunet GM, Daigle ND, Simard CF, Isenring P., J Biol Chem. February 13, 2004; 279 (7): 5648-54.


Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules., Zhou X, Zhou X, Vize PD., Dev Biol. July 15, 2004; 271 (2): 322-38.                                  


Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays., Arima K, Shiotsugu J, Niu R, Khandpur R, Martinez M, Shin Y, Koide T, Cho KW, Kitayama A, Ueno N, Chandraratna RA, Blumberg B., Dev Dyn. February 1, 2005; 232 (2): 414-31.                          


Pronephric regulation of acid-base balance; coexpression of carbonic anhydrase type 2 and sodium-bicarbonate cotransporter-1 in the late distal segment., Zhou X, Vize PD., Dev Dyn. May 1, 2005; 233 (1): 142-4.    


Molecular mechanisms of cation transport by the renal Na+-K+-Cl- cotransporter: structural insight into the operating characteristics of the ion transport sites., Gagnon E, Bergeron MJ, Daigle ND, Lefoll MH, Isenring P., J Biol Chem. September 16, 2005; 280 (37): 32555-63.


Novel insights regarding the operational characteristics and teleological purpose of the renal Na+-K+-Cl2 cotransporter (NKCC2s) splice variants., Brunet GM, Gagnon E, Simard CF, Daigle ND, Caron L, Noël M, Lefoll MH, Bergeron MJ, Isenring P., J Gen Physiol. October 1, 2005; 126 (4): 325-37.              


WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis., Rinehart J, Kahle KT, de Los Heros P, Vazquez N, Meade P, Wilson FH, Hebert SC, Gimenez I, Gamba G, Lifton RP., Proc Natl Acad Sci U S A. November 15, 2005; 102 (46): 16777-82.


Regulatory phosphorylation sites in the NH2 terminus of the renal Na-K-Cl cotransporter (NKCC2)., Giménez I, Forbush B., Am J Physiol Renal Physiol. December 1, 2005; 289 (6): F1341-5.


Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter., Gagnon KB, England R, Delpire E., Mol Cell Biol. January 1, 2006; 26 (2): 689-98.


Membrane trafficking and the regulation of NKCC2., Mount DB., Am J Physiol Renal Physiol. March 1, 2006; 290 (3): F606-7.


Activity of the renal Na+-K+-2Cl- cotransporter is reduced by mutagenesis of N-glycosylation sites: role for protein surface charge in Cl- transport., Paredes A, Plata C, Rivera M, Moreno E, Vázquez N, Muñoz-Clares R, Hebert SC, Gamba G., Am J Physiol Renal Physiol. May 1, 2006; 290 (5): F1094-102.


Late-onset manifestation of antenatal Bartter syndrome as a result of residual function of the mutated renal Na+-K+-2Cl- co-transporter., Pressler CA, Heinzinger J, Jeck N, Waldegger P, Pechmann U, Reinalter S, Konrad M, Beetz R, Seyberth HW, Waldegger S., J Am Soc Nephrol. August 1, 2006; 17 (8): 2136-42.


FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE, Zhou X, Zhou X, Ungos JM, Raible DW, Altmann CR, Vize PD., Dev Biol. September 1, 2006; 297 (1): 103-17.                    


A single binding motif is required for SPAK activation of the Na-K-2Cl cotransporter., Gagnon KB, England R, Delpire E., Cell Physiol Biochem. January 1, 2007; 20 (1-4): 131-42.


Odd-skipped genes encode repressors that control kidney development., Tena JJ, Neto A, de la Calle-Mustienes E, Bras-Pereira C, Casares F, Gómez-Skarmeta JL., Dev Biol. January 15, 2007; 301 (2): 518-31.          


The residues determining differences in ion affinities among the alternative splice variants F, A, and B of the mammalian renal Na-K-Cl cotransporter (NKCC2)., Giménez I, Forbush B., J Biol Chem. March 2, 2007; 282 (9): 6540-7.


WNK4 kinase is a negative regulator of K+-Cl- cotransporters., Garzón-Muvdi T, Pacheco-Alvarez D, Gagnon KB, Vázquez N, Ponce-Coria J, Moreno E, Delpire E, Gamba G., Am J Physiol Renal Physiol. April 1, 2007; 292 (4): F1197-207.


Regulation of the renal-specific Na+-K+-2Cl- co-transporter NKCC2 by AMP-activated protein kinase (AMPK)., Fraser SA, Gimenez I, Cook N, Jennings I, Katerelos M, Katsis F, Levidiotis V, Kemp BE, Power DA., Biochem J. July 1, 2007; 405 (1): 85-93.


Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U, Pickney LM, Ozpolat BD, Wessely O., Dev Biol. July 1, 2007; 307 (1): 152-64.                  


The prepattern transcription factor Irx3 directs nephron segment identity., Reggiani L, Raciti D, Airik R, Kispert A, Brändli AW., Genes Dev. September 15, 2007; 21 (18): 2358-70.                


The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros., Wingert RA, Selleck R, Yu J, Song HD, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP, Davidson AJ., PLoS Genet. October 1, 2007; 3 (10): 1922-38.                


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brändli AW., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        


Cotransporters, WNKs and hypertension: an update., Flatman PW., Curr Opin Nephrol Hypertens. March 1, 2008; 17 (2): 186-92.


Surface expression of epithelial Na channel protein in rat kidney., Frindt G, Ergonul Z, Palmer LG., J Gen Physiol. June 1, 2008; 131 (6): 617-27.                            


Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases., Ponce-Coria J, San-Cristobal P, Kahle KT, Vazquez N, Pacheco-Alvarez D, de Los Heros P, Juárez P, Muñoz E, Michel G, Bobadilla NA, Gimenez I, Lifton RP, Hebert SC, Gamba G., Proc Natl Acad Sci U S A. June 17, 2008; 105 (24): 8458-63.


Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent., Welker P, Böhlick A, Mutig K, Salanova M, Kahl T, Schlüter H, Blottner D, Ponce-Coria J, Gamba G, Bachmann S., Am J Physiol Renal Physiol. September 1, 2008; 295 (3): F789-802.


A dual requirement for Iroquois genes during Xenopus kidney development., Alarcón P, Rodríguez-Seguel E, Fernández-González A, Rubio R, Gómez-Skarmeta JL., Development. October 1, 2008; 135 (19): 3197-207.                            


Requirement of Wnt/beta-catenin signaling in pronephric kidney development., Lyons JP, Miller RK, Zhou X, Weidinger G, Deroo T, Denayer T, Park JI, Ji H, Hong JY, Li A, Moon RT, Jones EA, Vleminckx K, Vleminckx K, Vize PD, McCrea PD., Mech Dev. January 1, 2009; 126 (3-4): 142-59.        


Multichannel wholemount fluorescent and fluorescent/chromogenic in situ hybridization in Xenopus embryos., Vize PD, McCoy KE, Zhou X., Nat Protoc. January 1, 2009; 4 (6): 975-83.  


Parameter estimation for mathematical models of NKCC2 cotransporter isoforms., Marcano M, Yang HM, Nieves-González A, Clausen C, Moore LC., Am J Physiol Renal Physiol. February 1, 2009; 296 (2): F369-81.


Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG., Musa-Aziz R, Chen LM, Pelletier MF, Boron WF., Proc Natl Acad Sci U S A. March 31, 2009; 106 (13): 5406-11.


The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1., Agrawal R, Tran U, Wessely O., Development. December 1, 2009; 136 (23): 3927-36.              


Functional expression of the Na-K-2Cl cotransporter NKCC2 in mammalian cells fails to confirm the dominant-negative effect of the AF splice variant., Hannemann A, Christie JK, Flatman PW., J Biol Chem. December 18, 2009; 284 (51): 35348-58.              


Multiple pathways for protein phosphatase 1 (PP1) regulation of Na-K-2Cl cotransporter (NKCC1) function: the N-terminal tail of the Na-K-2Cl cotransporter serves as a regulatory scaffold for Ste20-related proline/alanine-rich kinase (SPAK) AND PP1., Gagnon KB, Delpire E., J Biol Chem. May 7, 2010; 285 (19): 14115-21.


Localization and functional characterization of the human NKCC2 isoforms., Carota I, Theilig F, Oppermann M, Kongsuphol P, Rosenauer A, Schreiber R, Jensen BL, Walter S, Kunzelmann K, Castrop H., Acta Physiol (Oxf). July 1, 2010; 199 (3): 327-38.


On the substrate recognition and negative regulation of SPAK, a kinase modulating Na+-K+-2Cl- cotransport activity., Gagnon KB, Delpire E., Am J Physiol Cell Physiol. September 1, 2010; 299 (3): C614-20.


Molecular determinants of hyperosmotically activated NKCC1-mediated K+/K+ exchange., Gagnon KB, Delpire E., J Physiol. September 15, 2010; 588 (Pt 18): 3385-96.


Inversin relays Frizzled-8 signals to promote proximal pronephros development., Lienkamp S, Ganner A, Boehlke C, Schmidt T, Arnold SJ, Schäfer T, Romaker D, Schuler J, Hoff S, Powelske C, Eifler A, Krönig C, Bullerkotte A, Nitschke R, Kuehn EW, Kim E, Burkhardt H, Brox T, Ronneberger O, Gloy J, Walz G., Proc Natl Acad Sci U S A. November 23, 2010; 107 (47): 20388-93.                          

???pagination.result.page??? 1 2 ???pagination.result.next???