Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-20106
Mol Gen Genet 1995 Feb 06;2463:387-96. doi: 10.1007/bf00288613.
Show Gene links Show Anatomy links

Cloning and expression of a Xenopus gene that prevents mitotic catastrophe in fission yeast.

Su JY , Maller JL .


???displayArticle.abstract???
In fission yeast the Wee1 kinase and the functionally redundant Mik1 kinase provide a regulatory mechanism to ensure that mitosis is initiated only after the completion of DNA synthesis. Yeast in which both Wee1 and Mik1 kinases are defective exhibit a mitotic catastrophe phenotype, presumably due to premature entry into mitosis. Because of the functional conservation of cell cycle control elements, the expression of a vertebrate wee1 or mik1 homolog would be expected to rescue such lethal mutations in yeast. A Xenopus total ovary cDNA library was constructed in a fission yeast expression vector and used to transform a yeast temperature-dependent mitotic catastrophe mutant defective in both wee1 and mik1. Here we report the identification of a Xenopus cDNA clone that can rescue several different yeast mitotic catastrophe mutants defective in Wee1 kinase function. The expression of this clone in a wee1/mik1-deficient mutant causes an elongated cell phenotype under non-permissive growth conditions. The 2.0 kb cDNA clone contains an open reading frame of 1263 nucleotides, encoding a predicted 47 kDa protein. Bacterially expressed recombinant protein was used to raise a polyclonal antibody, which specifically recognizes a 47 kDa protein from Xenopus oocyte nuclei, suggesting the gene encodes a nuclear protein in Xenopus. The ability of this cDNA to complement mitotic catastrophe mutations is independent of Wee1 kinase activity.

???displayArticle.pubmedLink??? 7854324
???displayArticle.link??? Mol Gen Genet


Species referenced: Xenopus laevis
Genes referenced: wee1

References [+] :
Addison, The p53 nuclear localisation signal is structurally linked to a p34cdc2 kinase motif. 1990, Pubmed