Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-11176
Biochim Biophys Acta 2000 Apr 17;14962-3:252-60.
Show Gene links Show Anatomy links

Volume sensitive efflux of taurine in HEK293 cells overexpressing phospholemman.

Morales-Mulia M , Pasantes-Morales H , Morán J .


Abstract
The role of the phospholemman (PLM) on the efflux of taurine and chloride induced by swelling was studied in HEK293 cells overexpressing stable transfected PLM. PLM, a substrate for protein kinases C and A, is a protein that induces an anion current in Xenopus oocytes and forms taurine-selective channels in lipid bilayers. Taurine contributes as an osmolyte to regulatory volume decrease (RVD) and is highly permeable through PLM channels in bilayers. In PLM-overexpressing cells the process of RVD was more rapid and efficient (75%) than in control cells (44%). Also, [(3)H]taurine and (125)I efflux induced by hyposmolarity were markedly increased (30-100%) in two subclones of cells overexpressing PLM. This increased efflux was sensitive to the Cl channel blockers DDF, NPPB and DIDS. Acute treatment of control cells with isoproterenol and norepinephrine induced a significant potentiation (50-60%) of [(3)H]taurine release induced by hyposmolarity. In PLM-overexpressing cells the potentiation by these drugs was higher (100%). Insulin induced also an increase in [(3)H]taurine release, but only in PLM-overexpressing cells (50%). These results indicate that PLM may play a role in the RVD and that its phosphorylation may have a physiological significance during this process. The mechanisms involved in this process could include the activation of PLM itself as channel or the modulation of other preexisting channels.

PubMed ID: 10771093
Article link: Biochim Biophys Acta


Species referenced: Xenopus
Genes referenced: fxyd1 ins nppb