Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-29869
Mol Cell Biochem 1984 Jan 01;612:99-109.
Show Gene links Show Anatomy links

Origins of replication and gene regulation.

Taylor JH .


Abstract
Eukaryotic chromosomes appear to consist of many replicons, the time of replication of which is probably controlled by specific origins. However, plasmids without specific eukaryotic origins may also replicate in some cells when injected into nuclei or transferred during transformation. The efficiency and the mechanisms of their initiation are still uncertain. A number of reports are cited which indicate that natural eukaryotic DNAs initiate their replication from specific origins. The nature of these origins are known in only a few instances and no general conclusions can yet be given about the nucleotide sequences involved. Short dispersed repeats of the Alu type appear to function as origins since they enhance the efficiency of replication of vector plasmids in Xenopus eggs. Certain sequences from a variety of eukaryotic DNAs also enhance the replicative potential of plasmids in yeast cells. The common features of such initiators or enhancers is uncertain. If dispersed repeats are origins in mammalian chromosomes, the number appears to be excessive. Either only a subset are functional, or the functional ones are only suborigins in larger replicons in which master origins (not yet isolated) function in the regulation of the timing of replication. Evidence is cited which indicates that the regulation of the time of replication of a gene or gene cluster is part of a regulatory system that makes the DNA available for transcription or leaves it in an inactive state. About one-half the DNA in mammalian cells is replicated in the first half of S phase (SE). After a brief pause in mid-S phase, the remainder of the DNA is replicated in what is designated late S (SL). The fractions replicated in SE and SL may vary in other phylogenetic groups, but wherever division of differentiated cells occurs such fractions are likely to be found. The following hypothesis is proposed. The DNA replicated in SL is suppressed in transcription, if it has the appropriate promoter regions, because the newly replicated DNA is complexed with proteins that suppress transcription. These proteins are only available during SL. Those genes replicated in SE are complexed with a different set of proteins which leave the promoter regions open for transcription when the appropriate regulatory molecules are available. In this way an inactive state or potentially active state can be transmitted from one cell generation to the next. Evidence is cited which indicates that genes which are active in all cells at some stage in the cell cycle are replicated in SE.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed ID: 6727871

Grant support: [+]


References [+] :
Axel, Analysis of the complexity and diversity of mRNA from chicken liver and oviduct. 1976, Pubmed