Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-902
J Biol Chem 2006 Feb 24;2818:4823-30. doi: 10.1074/jbc.M510197200.
Show Gene links Show Anatomy links

A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels.

Kang HW , Park JY , Jeong SW , Kim JA , Moon HJ , Perez-Reyes E , Lee JH .


???displayArticle.abstract???
Molecular cloning studies have revealed that heterogeneity of T-type Ca2+ currents in native tissues arises from the three isoforms of Ca(v)3 channels: Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3. From pharmacological analysis of the recombinant T-type channels, low concentrations (<50 microM) of nickel were found to selectively block the Ca(v)3.2 over the other isoforms. To date, however, the structural element(s) responsible for the nickel block on the Ca(v)3.2 T-type Ca2+ channel remain unknown. Thus, we constructed chimeric channels between the nickel-sensitive Ca(v)3.2 and the nickel-insensitive Ca(v)3.1 to localize the region interacting with nickel. Systematic assaying of serial chimeras suggests that the region preceding domain I S4 of Ca(v)3.2 contributes to nickel block. Point mutations of potential nickel-interacting sites revealed that H191Q in the S3-S4 loop of domain I significantly attenuated the nickel block of Ca(v)3.2, mimicking the nickel-insensitive blocking potency of Ca(v)3.1. These findings indicate that His-191 in the S3-S4 loop is a critical residue conferring nickel block to Ca(v)3.2 and reveal a novel role for the S3-S4 loop to control ion permeation through T-type Ca2+ channels.

???displayArticle.pubmedLink??? 16377633
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: cacna1h cav3.1 cav3.2