Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15108
J Gen Physiol 1998 Apr 01;1114:565-81. doi: 10.1085/jgp.111.4.565.
Show Gene links Show Anatomy links

Gating of recombinant small-conductance Ca-activated K+ channels by calcium.

Hirschberg B , Maylie J , Adelman JP , Marrion NV .


???displayArticle.abstract???
Small-conductance Ca-activated K+ channels play an important role in modulating excitability in many cell types. These channels are activated by submicromolar concentrations of intracellular Ca2+, but little is known about the gating kinetics upon activation by Ca2+. In this study, single channel currents were recorded from Xenopus oocytes expressing the apamin-sensitive clone rSK2. Channel activity was detectable in 0.2 micro M Ca2+ and was maximal above 2 micro M Ca2+. Analysis of stationary currents revealed two open times and three closed times, with only the longest closed time being Ca dependent, decreasing with increasing Ca2+ concentrations. In addition, elevated Ca2+ concentrations resulted in a larger percentage of long openings and short closures. Membrane voltage did not have significant effects on either open or closed times. The open probability was approximately 0.6 in 1 micro M free Ca2+. A lower open probability of approximately 0.05 in 1 micro M Ca2+ was also observed, and channels switched spontaneously between behaviors. The occurrence of these switches and the amount of time channels spent displaying high open probability behavior was Ca2+ dependent. The two behaviors shared many features including the open times and the short and intermediate closed times, but the low open probability behavior was characterized by a different, long Ca2+-dependent closed time in the range of hundreds of milliseconds to seconds. Small-conductance Ca- activated K+ channel gating was modeled by a gating scheme consisting of four closed and two open states. This model yielded a close representation of the single channel data and predicted a macroscopic activation time course similar to that observed upon fast application of Ca2+ to excised inside-out patches.

???displayArticle.pubmedLink??? 9524139
???displayArticle.pmcLink??? PMC2217120
???displayArticle.link??? J Gen Physiol


Species referenced: Xenopus
Genes referenced: kcnn2 rps6ka3


???attribute.lit??? ???displayArticles.show???
References [+] :
Adelman, Calcium-activated potassium channels expressed from cloned complementary DNAs. 1992, Pubmed, Xenbase