Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1758
J Pharmacol Exp Ther 2005 Oct 01;3151:144-54. doi: 10.1124/jpet.105.089045.
Show Gene links Show Anatomy links

Potentiation of P2X1 ATP-gated currents by 5-hydroxytryptamine 2A receptors involves diacylglycerol-dependent kinases and intracellular calcium.

Ase AR , Raouf R , Bélanger D , Hamel E , Séguéla P .


???displayArticle.abstract???
Postsynaptic P2X1 ATP-gated channels are expressed in smooth muscle cells of the vascular and genitourinary systems, where they mediate desensitizing neurogenic contractions. Using the model of the isolated rat tail artery, we show that the vasoactive mediator 5-hydroxytryptamine (5-HT), via the 5-HT2A metabotropic receptor, regulates the desensitization kinetics of P2X1 responses by increasing their rate of recovery. Reconstituting the potentiation of P2X1 ATP-gated currents by 5-HT2A receptors in the Xenopus oocyte expression system, we provide evidence that this modulation depends on the activation of novel protein kinase C isoforms and protein kinase D (also named PKCmu) downstream of phospholipase Cbeta. Other major kinases like Ca2+/calmodulin kinase II, protein kinase A, mitogen-activated protein kinases, and tyrosine kinases were found not to be involved. Moreover, we report that buffering intracellular Ca2+ ions with the chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) decreases the rate of recovery of P2X1 responses and increases their sensitivity to potentiation by 5-HT2A receptors or by the diacylglycerol analog phorbol ester 12-myristate 13-acetate. We conclude that intracellular Ca2+ and a subset of diacylglycerol-dependent protein kinases regulate the activity of P2X1 receptor channels by modulating their recovery from desensitization.

???displayArticle.pubmedLink??? 15958718
???displayArticle.link??? J Pharmacol Exp Ther


Species referenced: Xenopus
Genes referenced: p2rx1