Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9252
Am J Physiol Cell Physiol 2001 May 01;2805:C1215-23. doi: 10.1152/ajpcell.2001.280.5.C1215.
Show Gene links Show Anatomy links

Cloning and functional characterization of a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain.

Pajor AM , Gangula R , Yao X .


???displayArticle.abstract???
Neurons contain a high-affinity Na(+)/dicarboxylate cotransporter for absorption of neurotransmitter precursor substrates, such as alpha-ketoglutarate and malate, which are subsequently metabolized to replenish pools of neurotransmitters, including glutamate. We have isolated the cDNA coding for a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain, called mNaDC-3. The mRNA coding for mNaDC-3 is found in brain and choroid plexus as well as in kidney and liver. The mNaDC-3 transporter has a broad substrate specificity for dicarboxylates, including succinate, alpha-ketoglutarate, fumarate, malate, and dimethylsuccinate. The transport of citrate is relatively insensitive to pH, but the transport of succinate is inhibited by acidic pH. The Michaelis-Menten constant for succinate in mNaDC-3 is 140 microM in transport assays and 16 microM at -50 mV in two-electrode voltage clamp assays. Transport is dependent on sodium, although lithium can partially substitute for sodium. In conclusion, mNaDC-3 likely codes for the high-affinity Na(+)/dicarboxylate cotransporter in brain, and it has some unusual electrical properties compared with the other members of the family.

???displayArticle.pubmedLink??? 11287335
???displayArticle.link??? Am J Physiol Cell Physiol
???displayArticle.grants??? [+]