Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-27818
Nucleic Acids Res 1987 Dec 23;1524:10507-21. doi: 10.1093/nar/15.24.10507.
Show Gene links Show Anatomy links

Rate of degradation of [alpha]- and [beta]-oligodeoxynucleotides in Xenopus oocytes. Implications for anti-messenger strategies.

Cazenave C , Chevrier M , Nguyen TT , Hélène C .


Abstract
End-labelled oligodeoxynucleotides were injected into Xenopus laevis oocytes and their degradation products were analysed by high-performance ion-exchange liquid chromatography after various times of incubation. The oligonucleotides were synthesised with either the natural [beta] anomers or the synthetic [alpha] anomers of deoxynucleotide units. Oligo-[beta] deoxynucleotides are short-lived inside oocytes (half-life approximately equal to 10 min). Covalent attachment of an intercalating agent to the 3'-phosphate and of a methylthiophosphate group at the 5'-end protects oligodeoxynucleotides against 3'- and 5'-exonucleases, respectively. The half-life of such substituted oligodeoxynucleotides is increased to 40 minutes. Oligo-[alpha]-deoxynucleotides are quite resistant to both endo and exonucleases inside Xenopus oocytes. After 8 hours only 40% of a 16-mer oligo-[alpha]-deoxynucleotide were hydrolysed. The rapid degradation of oligo-[beta]-deoxynucleotides suggests that efficient inhibition of translation in Xenopus oocytes involves an RNase H-induced hydrolysis of mRNAs hybridized to oligo-[beta]-deoxynucleotides.

PubMed ID: 2447563
PMC ID: PMC339959
Article link: Nucleic Acids Res



References [+] :
Asseline, Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides. 1984, Pubmed