Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-20950
Am J Physiol 1994 Aug 01;2672 Pt 2:F311-7. doi: 10.1152/ajprenal.1994.267.2.F311.
Show Gene links Show Anatomy links

Cloning and expression of a renal Na-Pi cotransport system from flounder.

Werner A , Murer H , Kinne RK .


???displayArticle.abstract???
Starting with the recently published sequence of the rat renal Na-Pi cotransport system, we have cloned a corresponding cDNA from the kidney of winter flounder (Pseudopleuronectes americanus), designated flounder NaPi-II. Expression of the cognate in vitro transcribed RNA in Xenopus laevis oocytes stimulated Na-dependent Pi transport specifically and in a time- and dose-dependent manner. Apparent affinities of Na and Pi, as well as the pH dependency, were very similar to those found for the mammalian systems. The flounder NaPi-II cDNA is 2,424 base pairs long and encodes a protein of 637 amino acids. The hydropathy plot predicts eight transmembrane spanning domains. In these regions the flounder NaPi-II-deduced protein shows high homology (approximately 80%, identity, approximately 92% similarity) with the amino acid sequences reported for mammalian NaPi-II proteins. However, in the hydrophilic parts of flounder NaPi-II protein, only minimal similarity could be found between fish and mammalian systems (30% homology, 45% similarity). Northern blot analysis with flounder NaPi-II cDNA as a probe confirmed this finding: even under nonstringent washing conditions, no cross-hybridization with mRNA from rat renal cortex was observed. Interestingly, flounder intestine was found to contain high levels of mRNA corresponding to NaPi-II. Supplementary bands of 1.9 and 4.2 kb were observed on Northern blots of renal and intestinal tissue. The close functional relationship of the flounder NaPi-II protein with the previously described Na-Pi cotransport systems and the pronounced differences on the level of their primary structures provide the tools for detailed structure-function analysis of Na-Pi cotransport.

???displayArticle.pubmedLink??? 8067391
???displayArticle.link??? Am J Physiol