Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-58927
Neurology 2022 Mar 17;9820:e2046-e2059. doi: 10.1212/WNL.0000000000200660.
Show Gene links Show Anatomy links

Spectrum of Phenotypic, Genetic, and Functional Characteristics in Patients With Epilepsy With KCNC2 Pathogenic Variants.

Schwarz N , Seiffert S , Pendziwiat M , Rademacher AV , Brünger T , Hedrich UBS , Augustijn PB , Baier H , Bayat A , Bisulli F , Buono RJ , Bruria BZ , Doyle MG , Guerrini R , Heimer G , Iacomino M , Kearney H , Klein KM , Kousiappa I , Kunz WS , Lerche H , Licchetta L , Lohmann E , Minardi R , McDonald M , Montgomery S , Mulahasanovic L , Oegema R , Ortal B , Papacostas SS , Ragona F , Granata T , Reif PS , Rosenow F , Rothschild A , Scudieri P , Striano P , Tinuper P , Tanteles GA , Vetro A , Zahnert F , Goldberg EM , Zara F , Lal D , May P , Muhle H , Helbig I , Weber Y .


Abstract
BACKGROUND AND OBJECTIVES: KCNC2 encodes Kv3.2, a member of the Shaw-related (Kv3) voltage-gated potassium channel subfamily, which is important for sustained high-frequency firing and optimized energy efficiency of action potentials in the brain. The objective of this study was to analyze the clinical phenotype, genetic background, and biophysical function of disease-associated Kv3.2 variants. METHODS: Individuals with KCNC2 variants detected by exome sequencing were selected for clinical, further genetic, and functional analysis. Cases were referred through clinical and research collaborations. Selected de novo variants were examined electrophysiologically in Xenopus laevis oocytes. RESULTS: We identified novel KCNC2 variants in 18 patients with various forms of epilepsy, including genetic generalized epilepsy (GGE), developmental and epileptic encephalopathy (DEE) including early-onset absence epilepsy, focal epilepsy, and myoclonic-atonic epilepsy. Of the 18 variants, 10 were de novo and 8 were classified as modifying variants. Eight drug-responsive patients became seizure-free using valproic acid as monotherapy or in combination, including severe DEE cases. Functional analysis of 4 variants demonstrated gain of function in 3 severely affected DEE cases and loss of function in 1 case with a milder phenotype (GGE) as the underlying pathomechanisms. DISCUSSION: These findings implicate KCNC2 as a novel causative gene for epilepsy and emphasize the critical role of KV3.2 in the regulation of brain excitability.

PubMed ID: 35314505
Article link: Neurology
Grant support: [+]

Species referenced: Xenopus laevis

References [+] :
Bixby, Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. 1999, Pubmed