Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Mol Cell Biol
1990 Nov 01;1011:5634-45. doi: 10.1128/mcb.10.11.5634-5645.1990.
Show Gene links
Show Anatomy links
Maturation-specific polyadenylation and translational control: diversity of cytoplasmic polyadenylation elements, influence of poly(A) tail size, and formation of stable polyadenylation complexes.
Paris J
,
Richter JD
.
???displayArticle.abstract???
Early embryonic development in Xenopus laevis is programmed in part by maternally derived mRNAs, many of which are translated at the completion of meiosis (oocyte maturation). Polysomal recruitment of at least one of these mRNAs, G10, is regulated by cytoplasmic poly(A) elongation which, in turn, is dependent upon the cytoplasmic polyadenylation element (CPE) UUUUUUAUAAAG and the hexanucleotide AAUAAA (L. L. McGrew, E. Dworkin-Rastl, M. B. Dworkin, and J. D. Richter, Genes Dev. 3:803-815, 1989). We have investigated whether sequences similar to the G10 RNA CPE that are present in other RNAs could also be responsible for maturation-specific polyadenylation. B4 RNA, which encodes a histone H1-like protein, requires a CPE of the sequence UUUUUAAU as well as the polyadenylation hexanucleotide. The 3' untranslated regions of Xenopus c-mos RNA and mouse HPRT RNA also contain U-rich CPEs since they confer maturation-specific polyadenylation when fused to Xenopus B-globin RNA. Polyadenylation of B4 RNA, which occurs very early during maturation, is limited to 150 residues, and it is this number that is required for polysomal recruitment. To investigate the possible diversity of factors and/or affinities that might control polyadenylation, egg extracts that faithfully adenylate exogenously added RNA were used in competition experiments. At least one factor is shared by B4 and G10 RNAs, although it has a much greater affinity for B4 RNA. Additional experiments demonstrate that an intact CPE and hexanucleotide are both required to compete for the polyadenylation apparatus. Gel mobility shift assays show that two polyadenylation complexes are formed on B4 RNA. Optimal complex formation requires an intact CPE and hexanucleotide but not ongoing adenylation. These data, plus additional RNA competition studies, suggest that stable complex formation is enhanced by an interaction of the trans-acting factors that bind the CPE and polyadenylation hexanucleotide.
Colot,
Behavior of individual maternal pA+ RNAs during embryogenesis of Xenopus laevis.
1982, Pubmed,
Xenbase
Colot,
Behavior of individual maternal pA+ RNAs during embryogenesis of Xenopus laevis.
1982,
Pubmed
,
Xenbase
Drummond,
The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes.
1985,
Pubmed
,
Xenbase
Dumont,
Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals.
1972,
Pubmed
,
Xenbase
Dworkin,
Changes in RNA titers and polyadenylation during oogenesis and oocyte maturation in Xenopus laevis.
1985,
Pubmed
,
Xenbase
Dworkin,
Mobilization of specific maternal RNA species into polysomes after fertilization in Xenopus laevis.
1985,
Pubmed
,
Xenbase
Fox,
Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU.
1989,
Pubmed
,
Xenbase
Galili,
Role of the 3'-poly(A) sequence in translational regulation of mRNAs in Xenopus laevis oocytes.
1988,
Pubmed
,
Xenbase
Huarte,
Meiotic maturation of mouse oocytes triggers the translation and polyadenylation of dormant tissue-type plasminogen activator mRNA.
1987,
Pubmed
Hyman,
Translational inactivation of ribosomal protein mRNAs during Xenopus oocyte maturation.
1988,
Pubmed
,
Xenbase
Konecki,
Hypoxanthine-guanine phosphoribosyltransferase genes of mouse and Chinese hamster: construction and sequence analysis of cDNA recombinants.
1982,
Pubmed
Krieg,
Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs.
1984,
Pubmed
,
Xenbase
Manley,
Polyadenylation of mRNA precursors.
1988,
Pubmed
McGrew,
Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element.
1989,
Pubmed
,
Xenbase
Meinkoth,
Hybridization of nucleic acids immobilized on solid supports.
1984,
Pubmed
Melton,
Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter.
1984,
Pubmed
Murray,
Cyclin synthesis drives the early embryonic cell cycle.
1989,
Pubmed
,
Xenbase
Nevins,
The pathway of eukaryotic mRNA formation.
1983,
Pubmed
Paynton,
Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse.
1988,
Pubmed
Rosenthal,
Widespread changes in the translation and adenylation of maternal messenger RNAs following fertilization of Spisula oocytes.
1987,
Pubmed
Rosenthal,
Sequence-specific adenylations and deadenylations accompany changes in the translation of maternal messenger RNA after fertilization of Spisula oocytes.
1983,
Pubmed
Sagata,
Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes.
1988,
Pubmed
,
Xenbase
Sheets,
Two phases in the addition of a poly(A) tail.
1989,
Pubmed
Smith,
Expression of a histone H1-like protein is restricted to early Xenopus development.
1988,
Pubmed
,
Xenbase
Vassalli,
Regulated polyadenylation controls mRNA translation during meiotic maturation of mouse oocytes.
1989,
Pubmed
Wilt,
The dynamics of maternal poly(A)-containing mRNA in fertilized sea urchin eggs.
1977,
Pubmed