Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-36667
Pharm Res 2008 May 01;255:1085-91. doi: 10.1007/s11095-007-9472-4.
Show Gene links Show Anatomy links

Involvement of organic anion transporting polypeptide 1a5 (Oatp1a5) in the intestinal absorption of endothelin receptor antagonist in rats.

Tani T , Gram LK , Arakawa H , Kikuchi A , Chiba M , Ishii Y , Steffansen B , Tamai I .


Abstract
To assess the contribution of organic anion transporting polypeptide 1a5 (Oatp1a5/Oatp3) in the intestinal absorption of an orally active endothelin receptor antagonist, (+)-(5S,6R,7R)-2-butyl-7-[2-((2S)-2-carboxypropyl)-4-methoxyphenyl]-5-(3,4-methylene-dioxyphenyl)cyclopenteno[1,2-b]pyridine-6-carboxylic acid (compound-A) in rats. Uptakes of [(14)C]compound-A by Oatp1a5-expressing Xenopus laevis oocytes and isolated rat enterocytes were evaluated. The uptake of compound-A by Oatp1a5-expressing oocytes was significantly higher than that by water-injected oocytes and Oatp1a5-mediated uptake was saturable with K(m) value of 116 microM. Compound-A was taken up into isolated enterocytes in time- and concentration-dependent manners and the estimated K(m) value was 83 microM, which was close to that for the Oatpt1a5-mediated uptake in oocytes. Both uptakes of compound-A by Oatp1a5-expressing oocytes and enterocytes were pH-sensitive with significantly higher uptake at acidic pH than those at neutral pH. Uptakes of compound-A into Oatp1a5-expressing oocytes and enterocytes were significantly decreased in the presence of Oatp1a5 substrates such as bromosulfophthalein and taurocholic acid. These results consistently suggested that Oatp1a5 is contributing to the intestinal absorption of compound-A at least in part, and the transporter-mediated absorption seems to be maximized at the acidic microenvironment of epithelial cells in the small intestine in rats.

PubMed ID: 17957449
Article link: Pharm Res



References [+] :
Cattori, Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatp1, Oatp2 and Oatp3. 2001, Pubmed, Xenbase