XB-ART-27581
J Exp Zool
1988 Apr 01;2461:65-70. doi: 10.1002/jez.1402460109.
Show Gene links
Show Anatomy links
Formation of flagella during interphase in secondary spermatocytes from Xenopus laevis in vitro.
Abstract
In cell culture, single motile flagella, 1 micron in length, were observed to grow from secondary spermatocytes of Xenopus laevis within 2-3 hours after telophase I, at 22 degrees C. About 90% of the secondary spermatocytes formed flagella as observed by phase-contrast microscopy. The flagella grew up to 2-6 microns in length during interphase II, which lasted about 18 hours. The presence of the "9 + 2" microtubular structure of the flagellar axonemes of secondary spermatocytes was confirmed by electron microscopy. When chromosomal condensation began (prophase II), the flagella were resorbed into the cells and, after the second meiotic division, a flagellum was formed again by each of the round spermatids. Thus, there appears to be a close relationship between the meiotic division cycle and the formation of flagella. The possible contribution of Sertoli cells to the formation of flagella in secondary spermatocytes was examined by reducing the number of Sertoli cells to less than ten per culture. Under these conditions, flagella formed in secondary spermatocytes with very high efficiency. It is very likely that secondary spermatocytes form flagella in vivo, since the secondary spermatocytes were observed to have flagella immediately after dissociation of the testes.
PubMed ID: 3290387
Article link: J Exp Zool