Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-39918
J Gen Physiol 2009 May 01;1335:467-83. doi: 10.1085/jgp.200810082.
Show Gene links Show Anatomy links

A single charged voltage sensor is capable of gating the Shaker K+ channel.

Gagnon DG , Bezanilla F .


???displayArticle.abstract???
We sought to determine the contribution of an individual voltage sensor to Shaker's function. Concatenated heterotetramers of Shaker zH4 Delta(6-46) wild type (wt) in combination with a neutral S4 segment Shaker mutant (mut) with stoichiometries 2wt/2mut and 1wt/3mut were studied and compared with the 4wt concatenated homotetramer. A single charged voltage sensor is sufficient to open Shaker conductance with reduced delay (<1 ms) and at more hyperpolarized voltages compared with 4wt. In addition, the wt-like slow inactivation of 1wt/3mut was almost completely eliminated by mutations T449V-I470C in its single wt subunit, indicating that the subunits bearing a neutral S4 were unable to trigger slow inactivation. Our results strongly suggest that a neutral S4 segment of Shaker's subunit is voltage insensitive and its voltage sensor is in the activated position (i.e., ready for pore opening), and provide experimental support to the proposed model of independent voltage sensors with a final, almost voltage-independent concerted step.

???displayArticle.pubmedLink??? 19398775
???displayArticle.pmcLink??? PMC2712970
???displayArticle.link??? J Gen Physiol
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: mmut


???attribute.lit??? ???displayArticles.show???
References [+] :
Aggarwal, Contribution of the S4 segment to gating charge in the Shaker K+ channel. 1996, Pubmed, Xenbase