Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-45184
Plant J 2012 Sep 01;715:750-62. doi: 10.1111/j.1365-313X.2012.05031.x.
Show Gene links Show Anatomy links

HKT2;2/1, a K⁺-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism.

Oomen RJ , Benito B , Sentenac H , Rodríguez-Navarro A , Talón M , Véry AA , Domingo C .


???displayArticle.abstract???
We have investigated OsHKT2;1 natural variation in a collection of 49 cultivars with different levels of salt tolerance and geographical origins. The effect of identified polymorphism on OsHKT2;1 activity was analysed through heterologous expression of variants in Xenopus oocytes. OsHKT2;1 appeared to be a highly conserved protein with only five possible amino acid substitutions that have no substantial effect on functional properties. Our study, however, also identified a new HKT isoform, No-OsHKT2;2/1 in Nona Bokra, a highly salt-tolerant cultivar. No-OsHKT2;2/1 probably originated from a deletion in chromosome 6, producing a chimeric gene. Its 5' region corresponds to that of OsHKT2;2, whose full-length sequence is not present in Nipponbare but has been identified in Pokkali, a salt-tolerant rice cultivar. Its 3' region corresponds to that of OsHKT2;1. No-OsHKT2;2/1 is essentially expressed in roots and displays a significant level of expression at high Na⁺ concentrations, in contrast to OsHKT2;1. Expressed in Xenopus oocytes or in Saccharomyces cerevisiae, No-OsHKT2;2/1 exhibited a strong permeability to Na⁺ and K⁺, even at high external Na⁺ concentrations, like OsHKT2;2, and in contrast to OsHKT2;1. Our results suggest that No-OsHKT2;2/1 can contribute to Nona Bokra salt tolerance by enabling root K⁺ uptake under saline conditions.

???displayArticle.pubmedLink??? 22530609
???displayArticle.link??? Plant J