XB-ART-23315
Nature
1992 Oct 01;3596394:420-3. doi: 10.1038/359420a0.
Show Gene links
Show Anatomy links
Evidence for cooperative interactions in potassium channel gating.
???displayArticle.abstract???
Cloning and expression of voltage-activated potassium ion-channel complementary DNAs has confirmed that these channels are composed of four identical subunits, each containing a voltage sensor. It has been generally accepted that the voltage sensors must reach a permissive state through one or more conformational ('gating') transitions before the channel can open. To test whether each subunit gates independently, we have constructed cDNAs encoding four subunits on a single polypeptide chain, enabling us to specify the subunit stoichiometry. The gating of heterotetramers made up from combinations of subunits with different gating phenotypes strongly suggests that individual subunits gate cooperatively, rather than independently. Nonindependent subunit gating is consistent with measurements of the kinetics of K(+)-channel gating currents and in line with the widespread subunit cooperativity observed in other multisubunit proteins.
???displayArticle.pubmedLink??? 1406954
???displayArticle.link??? Nature