Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-22430
Chromosoma 1993 Jul 01;1027:478-83. doi: 10.1007/bf00357103.
Show Gene links Show Anatomy links

Chromosome length and DNA loop size during early embryonic development of Xenopus laevis.

Micheli G , Luzzatto AR , Carrì MT , de Capoa A , Pelliccia F .


???displayArticle.abstract???
The looped organization of the eukaryotic genome mediated by a skeletal framework of non-histone proteins is conserved throughout the cell cycle. The radial loop/scaffold model envisages that the higher order architecture of metaphase chromosomes relies on an axial structure around which looped DNA domains are radially arranged through stable attachment sites. In this light we investigated the relationship between the looped organization and overall morphology of chromosomes. In developing Xenopus laevis embryos at gastrulation, the bulk of the loops associated with histone-depleted nuclei exhibit a significant size increase, as visualized by fluorescence microscopy of the fully extended DNA halo surrounding high salt treated, ethidium bromide stained nuclei. This implies a reduction in the number of looped domains anchored to the supporting nucleoskeletal structure. The cytological analysis of metaphase plates from acetic acid fixed whole embryos, carried out in the absence of drugs inducing chromosome condensation, reveals a progressive thickening and shortening of metaphase chromosomes during development. We interpret these findings as a strong indication that the size and number of DNA loops influence the thickness and length of the chromosomes, respectively. The quantitative analysis of chromosome length distributions at different developmental stages suggests that the shortening is timed differently in different embryonic cells.

???displayArticle.pubmedLink??? 8375216
???displayArticle.link??? Chromosoma



References [+] :
Baumgartner, Genes occupy a fixed and symmetrical position on sister chromatids. 1991, Pubmed