Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Some properties of the contractile system and sarcoplasmic reticulum of skinned slow fibres from Xenopus muscle.
Horiuti K
.
Abstract
Properties of both the contractile system and the sarcoplasmic reticulum (s.r.) of slow fibres from the iliofibularis muscle of Xenopus laevis were examined by using 'skinned' preparations mainly at 4 degrees C and pH 7.0. The results were compared with those of skinned fast fibres. The contractile system was activated with various concentrations of alkaline earth metal ions and it was found that the sensitivity of the contractile system of slow fibres to Sr2+ and Ba2+ was much higher than that of fast fibres while their Ca2+ sensitivity was similar. Caffeine (20-50 mM) reversibly induced appreciable active steady contraction of the slow fibre with one-third to one-half maximal isometric tension in the practical absence of Ca2+ (in the presence of 40 mM-EGTA) at relatively high temperatures (10-20 degrees C). The speed of unloaded shortening of caffeine-activated skinned slow fibres in the absence of Ca2+ was not slow but even faster than fibres activated to the same isometric tension level with Ca2+. When the s.r. of a skinned slow fibre was loaded with Ca2+ or Sr2+, 25 mM-caffeine caused transient contraction of the fibre due to a release of Ca2+ or Sr2+ from the s.r. The magnitude of such caffeine contracture was used as a quantitative indicator of the amount of Ca2+ or Sr2+ in the s.r. The dependence on [Ca2+] or [Sr2+] of the initial rate of Ca2+ or Sr2+ uptake by the empty s.r. of slow fibres was almost the same as that of fast fibres. In both types of fibres, a much higher concentration of Sr2+ than Ca2+ was required to activate the pump. When [Ca2+] outside the s.r. was sufficiently high (e.g. 10(-5) M), the maximum level to which the slow fibre s.r. could take up Ca2+ decreased, suggesting that the Ca2+-induced Ca2+ release mechanism also exists in slow fibre s.r. The rate of the Ca2+ leakage from slow fibre s.r. into the media without Ca2+ was higher than that from fast fibre s.r. In the absence of ATP, the enhancing effect of caffeine on the Ca2+-induced Ca2+ release mechanism was much weaker in slow fibres than in fast fibres, although adenosine-5'-monophosphate (AMP) enhanced it to a similar extent in both slow and fast fibres.(ABSTRACT TRUNCATED AT 400 WORDS)
Baylor,
Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients.
1983, Pubmed
Baylor,
Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients.
1983,
Pubmed
BURTON,
Formation constants for the complexes of adenosine di- or tri-phosphate with magnesium or calcium ions.
1959,
Pubmed
Costantin,
Calcium activation of frog slow muscle fibres.
1967,
Pubmed
Donaldson,
Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers.
1975,
Pubmed
Ebashi,
Control of muscle contraction.
1969,
Pubmed
Edwards,
The effect of the replacement of calcium by strontium on excitation-contraction coupling in frog skeletal muscle.
1966,
Pubmed
Endo,
Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres.
1970,
Pubmed
Endo,
Specific perforation of muscle cell membranes with preserved SR functions by saponin treatment.
1980,
Pubmed
,
Xenbase
Endo,
Calcium release from the sarcoplasmic reticulum.
1977,
Pubmed
Gilly,
Membrane electrical properties of frog slow muscle fibres.
1980,
Pubmed
Gilly,
Voltage-dependent charge movement in frog slow muscle fibres.
1980,
Pubmed
Gilly,
Mechanical activation in slow and twitch skeletal muscle fibres of the frog.
1980,
Pubmed
Good,
Hydrogen ion buffers for biological research.
1966,
Pubmed
HAMOIR,
CARP MYOGENS OF WHITE AND RED MUSCLES. GENERAL COMPOSITION AND ISOLATION OF LOW-MOLECULAR-WEIGHT COMPONENTS OF ABNORMAL AMINO ACID COMPOSITION.
1965,
Pubmed
Harafuji,
Re-examination of the apparent binding constant of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid with calcium around neutral pH.
1980,
Pubmed
Kakuta,
Effects of ATP and related compounds on the Ca-induced Ca release mechanism of the Xenopus SR.
1984,
Pubmed
,
Xenbase
Kirino,
Ca2+-induced Ca2+ release from fragmented sarcoplasmic reticulum: a comparison with skinned muscle fiber studies.
1982,
Pubmed
Kohama,
Divalent cation binding properties of slow skeletal muscle troponin in comparison with those of cardiac and fast skeletal muscle troponins.
1979,
Pubmed
Lännergren,
The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
1978,
Pubmed
,
Xenbase
Miledi,
Calcium transients in frog slow muscle fibres.
1977,
Pubmed
Miller,
EGTA purity and the buffering of calcium ions in physiological solutions.
1984,
Pubmed
Morgan,
Vertebrate slow muscle: its structure, pattern of innervation, and mechanical properties.
1984,
Pubmed
Page,
A comparison of the fine structures of frog slow and twitch muscle fibers.
1965,
Pubmed
Smith,
Varieties of fast and slow extrafusal muscle fibres in amphibian hind limb muscles.
1973,
Pubmed
,
Xenbase
Stephenson,
Temperature-dependent calcium sensitivity changes in skinned muscle fibres of rat and toad.
1985,
Pubmed
Takagi,
Guinea pig soleus and extensor digitorum longus: a study on single-skimmed fibers.
1977,
Pubmed
Wendt,
Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat.
1983,
Pubmed
Yamada,
Reaction mechanism of the Ca 2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VII. Recognition and release of Ca 2+ ions.
1972,
Pubmed