Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-43659
Cell 2011 May 27;1455:692-706. doi: 10.1016/j.cell.2011.03.053.
Show Gene links Show Anatomy links

Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions.

Ruthenburg AJ , Li H , Milne TA , Dewell S , McGinty RK , Yuen M , Ueberheide B , Dou Y , Muir TW , Patel DJ , Allis CD .


???displayArticle.abstract???
Little is known about how combinations of histone marks are interpreted at the level of nucleosomes. The second PHD finger of human BPTF is known to specifically recognize histone H3 when methylated on lysine 4 (H3K4me2/3). Here, we examine how additional heterotypic modifications influence BPTF binding. Using peptide surrogates, three acetyllysine ligands are indentified for a PHD-adjacent bromodomain in BPTF via systematic screening and biophysical characterization. Although the bromodomain displays limited discrimination among the three possible acetyllysines at the peptide level, marked selectivity is observed for only one of these sites, H4K16ac, in combination with H3K4me3 at the mononucleosome level. In support, these two histone marks constitute a unique trans-histone modification pattern that unambiguously resides within a single nucleosomal unit in human cells, and this module colocalizes with these marks in the genome. Together, our data call attention to nucleosomal patterning of covalent marks in dictating critical chromatin associations.

???displayArticle.pubmedLink??? 21596426
???displayArticle.pmcLink??? PMC3135172
???displayArticle.link??? Cell
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: bptf

References [+] :
Badenhorst, Biological functions of the ISWI chromatin remodeling complex NURF. 2002, Pubmed