XB-ART-21685
Nature
1994 Jan 13;3676459:179-82. doi: 10.1038/367179a0.
Show Gene links
Show Anatomy links
Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore.
???displayArticle.abstract???
Potassium channels are highly selective and allow the rapid flux of potassium ions through their pore. Several studies have implicated the H5 (P or SS1-SS2) segment as part of the pore in voltage-gated ion channels. The proposal that H5 spans at least 80% of the electric potential drop across the K+ channel pore is based on altered internal tetraethylammonium sensitivity arising from mutations of H5 residues that are 100% conserved among K+ channels having differing sensitivity to tetraethylammonium. Here we report that the S6 segment is also involved in K+ ion permeation and in governing the sensitivity to internal tetraethylammonium and barium. Transplanting the S6 segment of NGK2 into Shaker causes this S6 chimaera to adopt the single-channel conductance and sensitivity to internal tetraethylammonium and barium ions from the NGK2 channel. The differences between NGK2 and Shaker in external tetraethylammonium sensitivity, but not single-channel conductance, can be attributed to the differences in their H5 sequences. Three nonconserved S6 residues have been found to affect either single-channel conductance or internal tetraethylammonium sensitivity.
???displayArticle.pubmedLink??? 8114915
???displayArticle.link??? Nature
Species referenced: Xenopus
Genes referenced: btnl2