Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-27514
Exp Cell Res 1988 May 01;1761:194-7.
Show Gene links Show Anatomy links

How is the flagellar length of mature sperm determined? I. Comparison of flagellar growth in spermatids between newt and Xenopus in vitro.

Uno S , Abé S .


Abstract
The kinetics of flagellar growth in round spermatids were compared between Xenopus laevis and Cynops pyrrhogaster in vitro, the latter of which has about 13 times longer flagella in mature sperm than the former. In both species, more than 90% of the spermatids derived from marked primary spermatocytes grew flagella. In Xenopus the average flagellar length increased to 28 microns by the 6th day and then stopped growth, while in the newt, flagellar growth did not stop until reaching 107 microns in average on the 10th day. Maximal length was 36-38 microns in Xenopus and 187 microns in the newt. Two major differences in kinetics of flagellar growth were found between the two species. First, the initial rate of growth in the newt was about double the rate in Xenopus. Second, the period of flagellar growth in the newt (10 days) was also about double the period in Xenopus (5-6 days). Actinomycin D (10 micrograms/ml) had no inhibitory effect on flagellar growth in either species, whereas cycloheximide (10 microM) inhibited flagellar growth by more than 80% in both species. These results indicate that translational control presumably of flagellar protein synthesis plays an important role in flagellar growth in both species and in the difference in flagellar length in spermatids between Xenopus and newt.

PubMed ID: 3371423