XB-ART-27472
J Biol Chem
1988 Jun 05;26316:7838-45.
Show Gene links
Show Anatomy links
Human low density lipoprotein receptor expressed in Xenopus oocytes. Conserved signals for O-linked glycosylation and receptor-mediated endocytosis.
Abstract
The human low density lipoprotein (LDL) receptor is shown to carry out efficient receptor-mediated endocytosis in Xenopus laevis oocytes. Microinjection of mRNAs encoding the human receptor led to synthesis of a 120-kDa precursor possessing high mannose N-linked sugars and core O-linked sugars. During its transport to the cell surface, the protein increased in apparent size to 160 kDa, which is similar to the change that occurs in human cells. This increase was not seen when the receptor lacked the serine/threonine-rich region that undergoes O-linked glycosylation. The surface receptors bound 125I-LDL at 0 degrees C and internalized it with a half-time of 2 min when the cells were warmed to 19 degrees C. The rate of internalization was slowed by 7-fold when a single residue in the cytoplasmic domain (Tyr807) was changed to a cysteine, an alteration that slows incorporation into coated pits in mammalian cells. Deletion of the cytoplasmic domain abolished rapid internalization. We conclude that the signals for O-linked glycosylation and receptor-mediated endocytosis of the LDL receptor have been conserved throughout vertebrate evolution.
PubMed ID: 3372507
Article link: J Biol Chem
Grant support: