Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-19447
Brain Res Mol Brain Res 1995 Aug 01;321:135-42. doi: 10.1016/0169-328x(95)00071-y.
Show Gene links Show Anatomy links

Regulation of hemicholinium-3 sensitive choline uptake in Xenopus laevis oocytes by the second C2 domain of synaptotagmin.

O'Regan S , Birman S , Meunier FM .


???displayArticle.abstract???
A size-fractionated torpedo electric lobe cDNA library was screened for the neuronal choline transporter by functional expression in oocytes. A clone, TLC2B, was isolated that induced a component of choline uptake that was hemicholinium-3 sensitive and inhibited by the substitution of lithium for sodium at low choline concentrations. However, [3H]choline uptake by both injected and non-injected oocytes were characterized by high affinity constants, suggesting that TLC2B could be affecting a native choline transporter. Indeed, hemicholinium-3 sensitive choline uptake could also be induced by preincubation of non-injected oocytes with a protein kinase C inhibitor, H-7. By sequence analysis and immuno-precipitation, the peptide produced by injection of TLC2B cRNA was identified as a soluble 24 kDa C-terminal fragment of the neuronal protein, synaptotagmin. Full length synaptotagmin was, however, ineffective in the functional test. The peptide encoded by TLC2B corresponds to the second protein kinase C-homologous domain of torpedo synaptotagmin, and like other soluble C2 domain peptides, was capable of calcium-dependent translocation to membranes. Its action on choline uptake in oocytes was, however, abolished by the addition of calcium in the presence of a calcium ionophore. These results suggest that the interaction of certain C2 domains, such as the C-terminal domain of synaptotagmin, with more specific targets may be anulled in the presence of calcium due to its absorption to membrane phospholipids.

???displayArticle.pubmedLink??? 7494451
???displayArticle.link??? Brain Res Mol Brain Res