Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-37130
Biophys J 2007 Dec 15;9312:4209-24. doi: 10.1529/biophysj.107.104794.
Show Gene links Show Anatomy links

Speeding the recovery from ultraslow inactivation of voltage-gated Na+ channels by metal ion binding to the selectivity filter: a foot-on-the-door?

Szendroedi J , Sandtner W , Zarrabi T , Zebedin E , Hilber K , Dudley SC , Fozzard HA , Todt H .


???displayArticle.abstract???
Slow inactivated states in voltage-gated ion channels can be modulated by binding molecules both to the outside and to the inside of the pore. Thus, external K(+) inhibits C-type inactivation in Shaker K(+) channels by a "foot-in-the-door" mechanism. Here, we explore the modulation of a very long-lived inactivated state, ultraslow inactivation (I(US)), by ligand binding to the outer vestibule in voltage-gated Na(+) channels. Blocking the outer vestibule by a mutant mu-conotoxin GIIIA substantially accelerated recovery from I(US). A similar effect was observed if Cd(2+) was bound to a cysteine engineered to the selectivity filter (K1237C). In K1237C channels, exposed to 30 microM Cd(2+), the time constant of recovery from I(US) was decreased from 145.0 +/- 10.2 s to 32.5 +/- 3.3 s (P < 0.001). Recovery from I(US) was only accelerated if Cd(2+) was added to the bath solution during recovery (V = -120 mV) from I(US), but not when the channels were selectively exposed to Cd(2+) during the development of I(US) (-20 mV). These data could be explained by a kinetic model in which Cd(2+) binds with high affinity to a slow inactivated state (I(S)), which is transiently occupied during recovery from I(US). A total of 50 microM Cd(2+) produced an approximately 8 mV hyperpolarizing shift of the steady-state inactivation curve of I(S), supporting this kinetic model. Binding of lidocaine to the internal vestibule significantly reduced the number of channels entering I(US), suggesting that I(US) is associated with a conformational change of the internal vestibule of the channel. We propose a molecular model in which slow inactivation (I(S)) occurs by a closure of the outer vestibule, whereas I(US) arises from a constriction of the internal vestibule produced by a widening of the selectivity filter region. Binding of Cd(2+) to C1237 promotes the closure of the selectivity filter region, thereby hastening recovery from I(US). Thus, Cd(2+) ions may act like a foot-on-the-door, kicking the I(S) gate to close.

???displayArticle.pubmedLink??? 17720727
???displayArticle.pmcLink??? PMC2098733
???displayArticle.link??? Biophys J
???displayArticle.grants??? [+]


References [+] :
Abdulla, Changes in Na(+) channel currents of rat dorsal root ganglion neurons following axotomy and axotomy-induced autotomy. 2002, Pubmed