Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15710
J Neurosci 1997 Dec 01;1723:9035-47.
Show Gene links Show Anatomy links

Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human alpha4beta2 nicotinic acetylcholine receptors.

Kuryatov A , Gerzanich V , Nelson M , Olale F , Lindstrom J .


???displayArticle.abstract???
A mutation (S247F) in the channel-lining domain (M2) of the alpha4 nicotinic acetylcholine receptor (AChR) subunit has previously been linked genetically to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). To better understand the functional significance of this mutation, we characterized the properties of mutant and wild-type human alpha4beta2 AChRs expressed in Xenopus oocytes. Both had similar expression levels and EC50 values for ACh and nicotine. Substantial use-dependent functional upregulation was found for mutant alpha4beta2 AChRs, but not for wild type. Mutant AChR responses showed faster desensitization, slower recovery from desensitization, less inward rectification, and virtually no Ca2+ permeability as compared with wild-type alpha4beta2 AChRs. Addition of the alpha5 subunit restored Ca2+ permeability to the mutant alpha4beta2alpha5 AChRs. At -80 mV, wild-type alpha4beta2 AChR single channel currents exhibited two conductances, each with two mean open times (gamma1 = 17 pS, tau1 = 3.7 msec, and tau2 = 23.4 msec; gamma2 = 28 pS, tau1 = 1.9 msec, and tau2 = 8.1 msec). In contrast, mutant AChRs exhibited only one conductance of 11 pS, with tau1 = 1.9 msec and tau2 = 4.1 msec. The net effect of the mutation is to reduce AChR function. This could result in the hyperexcitability characteristic of epilepsy if the mutant AChRs were part of an inhibitory circuit, e.g., presynaptically regulating the release of GABA. In the minority of AChRs containing the alpha5 subunit, the overall functionality of these AChRs could be maintained despite the mutation in the alpha4 subunit.

???displayArticle.pubmedLink??? 9364050
???displayArticle.pmcLink??? PMC6573611
???displayArticle.link??? J Neurosci
???displayArticle.grants??? [+]


References [+] :
Akabas, Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. 1994, Pubmed, Xenbase