Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Mutations of the S4-S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes.
Sanguinetti MC
,
Xu QP
.
???displayArticle.abstract???
1. The structural basis for the activation gate of voltage-dependent K+ channels is not known, but indirect evidence has implicated the S4-S5 linker, the cytoplasmic region between the fourth and fifth transmembrane domains of the channel subunit. We have studied the effects of mutations in the S4-S5 linker of HERG (human ether-á-go-go-related gene), a human delayed rectifier K+ channel, in Xenopus oocytes. 2. Mutation of acidic residues (D540, E544) in the S4-S5 linker of HERG channels to neutral (Ala) or basic (Lys) residues accelerated the rate of channel deactivation. Most mutations greatly accelerated the rate of activation. However, E544K HERG channels activated more slowly than wild-type HERG channels. 3. Mutation of residues in the S4-S5 linker had little or no effect on fast inactivation, consistent with independence of HERG channel activation and inactivation 4. In response to large hyperpolarizations, D540K HERG channels can reopen into a state that is distinct from the normal depolarization-induced open state. It is proposed that substitution of a negatively charged Asp with the positively charged Lys disrupts a subunit interaction that normally stabilizes the channel in a closed state at negative transmembrane potentials. 5. The results indicate that the S4-S5 linker is a crucial component of the activation gate of HERG channels.
Aggarwal,
Contribution of the S4 segment to gating charge in the Shaker K+ channel.
1996, Pubmed,
Xenbase
Aggarwal,
Contribution of the S4 segment to gating charge in the Shaker K+ channel.
1996,
Pubmed
,
Xenbase
Durell,
Atomic scale structure and functional models of voltage-gated potassium channels.
1992,
Pubmed
Goldin,
Expression of ion channels by injection of mRNA into Xenopus oocytes.
1991,
Pubmed
,
Xenbase
Goldin,
Preparation of RNA for injection into Xenopus oocytes.
1992,
Pubmed
,
Xenbase
Holmgren,
Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating.
1997,
Pubmed
Holmgren,
N-type inactivation and the S4-S5 region of the Shaker K+ channel.
1996,
Pubmed
Hoshi,
Biophysical and molecular mechanisms of Shaker potassium channel inactivation.
1990,
Pubmed
,
Xenbase
Isacoff,
Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel.
1991,
Pubmed
,
Xenbase
Larsson,
Transmembrane movement of the shaker K+ channel S4.
1996,
Pubmed
,
Xenbase
Papazian,
Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence.
1991,
Pubmed
,
Xenbase
Perozo,
Gating currents in Shaker K+ channels. Implications for activation and inactivation models.
1992,
Pubmed
,
Xenbase
Sanguinetti,
A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel.
1995,
Pubmed
,
Xenbase
Sanguinetti,
Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents.
1990,
Pubmed
Sarkar,
The "megaprimer" method of site-directed mutagenesis.
1990,
Pubmed
Schönherr,
Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel.
1996,
Pubmed
,
Xenbase
Shibasaki,
Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart.
1987,
Pubmed
Shieh,
Role of transmembrane segment S5 on gating of voltage-dependent K+ channels.
1997,
Pubmed
,
Xenbase
Slesinger,
The S4-S5 loop contributes to the ion-selective pore of potassium channels.
1993,
Pubmed
,
Xenbase
Smith,
Interaction between the sodium channel inactivation linker and domain III S4-S5.
1997,
Pubmed
,
Xenbase
Smith,
The inward rectification mechanism of the HERG cardiac potassium channel.
1996,
Pubmed
Spector,
Fast inactivation causes rectification of the IKr channel.
1996,
Pubmed
,
Xenbase
Stühmer,
Gating currents of inactivating and non-inactivating potassium channels expressed in Xenopus oocytes.
1991,
Pubmed
,
Xenbase
Terlau,
Amino terminal-dependent gating of the potassium channel rat eag is compensated by a mutation in the S4 segment.
1997,
Pubmed
,
Xenbase
Trudeau,
HERG, a human inward rectifier in the voltage-gated potassium channel family.
1995,
Pubmed
Wang,
A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes.
1997,
Pubmed
,
Xenbase
Wang,
Regulation of deactivation by an amino terminal domain in human ether-à-go-go-related gene potassium channels.
1998,
Pubmed
,
Xenbase
Warmke,
A family of potassium channel genes related to eag in Drosophila and mammals.
1994,
Pubmed
Zou,
A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation.
1998,
Pubmed
,
Xenbase