Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-13995
DNA Cell Biol 1998 Oct 01;1710:869-78.
Show Gene links Show Anatomy links

Rat somatostatin receptor subtype 4 can be made sensitive to agonist-induced internalization by mutation of a single threonine (residue 331).

Kreienkamp HJ , Roth A , Richter D .


???displayArticle.abstract???
A sequence motif of 20 amino acid residues within the C-terminal portion of the rat somatostatin receptor subtype 4 (SSTR4) has been shown to prevent rapid agonist-dependent receptor internalization in transfected human embryonic kidney (HEK) cells. Molecular dissection of this motif by biochemical ligand-binding assays revealed that the block was released by mutating a single residue (threonine 331) to an alanine. These data are in line with confocal microscopic analysis of cultured primary neurons microinjected with cDNA constructs encoding either SSTR4 or the mutant T331A. Immunocytochemical analysis showed that the mutant receptor, but not SSTR4, was internalized. However, internalized T331A was not recycled to the cell surface, suggesting that it lacks sequence elements that determine intracellular sorting after endocytosis. Neither wildtype SSTR nor the mutant T331A exhibited functional desensitization when assayed for their ability to inhibit adenylate cyclase. In agreement with this, the wt receptor and its mutant were not phosphorylated in response to agonist treatment. Lack of desensitization of SSTR4 has been electrophysiologically verified by coexpressing the receptor with a G-protein-gated, inwardly rectifying potassium channel in Xenopus oocytes. A strong somatostatin 14 (SST14)-activated inward potassium current was observed that was long-lasting and which decayed only slowly after washout of the agonist. This is in contrast to another somatostatin receptor subtype, SSTR3, which mediates rapidly desensitizing currents. Binding experiments on HEK cells transfected with either SSTR3 or 4 indicated that this difference is not attributable to slow dissociation of the agonist from the receptor, suggesting that SSTR4 mediates long-lasting signalling, a property which may be relevant for clinical therapy.

???displayArticle.pubmedLink??? 9809748



Species referenced: Xenopus laevis
Genes referenced: sst.1 sstr3 sstr4