Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17953
Proc Natl Acad Sci U S A 1996 Jul 23;9315:7777-82. doi: 10.1073/pnas.93.15.7777.
Show Gene links Show Anatomy links

Highly efficient germ-line transmission of proviral insertions in zebrafish.

Gaiano N , Allende M , Amsterdam A , Kawakami K , Hopkins N .


???displayArticle.abstract???
An important technology in model organisms is the ability to make transgenic animals. In the past, transgenic technology in zebrafish has been limited by the relatively low efficiency with which transgenes could be generated using either DNA microinjection or retroviral infection. Previous efforts to generate transgenic zebrafish with retroviral vectors used a pseudotyped virus with a genome based on the Moloney murine leukemia virus and the envelope protein of the vesicular stomatitis virus. This virus was injected into blastula-stage zebrafish, and 16% of the injected embryos transmitted proviral insertions to their offspring, with most founders transmitting a single insertion to approximately 2% of their progeny. In an effort to improve this transgenic frequency, we have generated pseudotyped viral stocks of two new Moloney-based genomes. These viral stocks have titers up to two orders of magnitude higher than that used previously. Injection of these viruses resulted in a dramatic increase in transgenic efficiency; over three different experiments, 83% (110/133) of the injected embryos transmitted proviral insertions to 24% of their offspring. Furthermore, founders made with one of the viruses transmitted an average of 11 different insertions through their germ line. These results represent a 50- to 100-fold improvement in the efficiency of generating transgenic zebrafish, making it now feasible for a single lab to rapidly generate tens to hundreds of thousands of transgenes. Consequently, large-scale insertional mutagenesis strategies, previously limited to invertebrates, may now be possible in a vertebrate.

???displayArticle.pubmedLink??? 8755552
???displayArticle.pmcLink??? PMC38824
???displayArticle.link??? Proc Natl Acad Sci U S A
???displayArticle.grants??? [+]


References [+] :
Burns, Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. 1993, Pubmed