Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-18566
J Membr Biol 1996 Feb 01;1493:221-32. doi: 10.1007/s002329900022.
Show Gene links Show Anatomy links

Single-channel analysis of a delayed rectifier K+ channel in Xenopus myelinated nerve.

Koh DS , Vogel W .


???displayArticle.abstract???
Single-channel properties of a delayed rectifier voltage-gated K+ channel (I-type) were investigated in peripheral myelinated axons from Xenopus laevis. Channels activated between -60 and -40 mV with a potential of half-maximal activation, E50, at -47.5 mV. Averaged single-channel currents activated with a time delay at all membrane potentials tested. Time to half-maximal activation decreased from 80 to 1.6 msec between -60 and +40 mV. The channel inactivated monoexponentially with a time constant of 10.9 sec at -40 mV. The time constant of deactivation was 126 msec at -80 mV and 16.9 msec at -110 mV. In symmetrical 105 mM K+, the single-channel conductance (gamma) was 22 and 13 pS at negative and positive membrane potentials, respectively, at 13-15 degrees C. In Na+ -rich solution with 2.5 mM extracellular K+ gamma was 7 pS and the reversal potential was negative to -80 mV, indicating a high selectivity for K+ over Na+. gamma depended on extracellular K+ concentration (KD = 19.6 mM) and temperature (Q10 = 1.45). External tetraethylammonium (TEA) reduced the apparent single-channel amplitude at all potentials tested with a half-maximal inhibiting concentration (IC50) of 0.6 mM. Open probability of the channel, but not single-channel current amplitude was decreased by extracellular dendrotoxin (DTX, IC50 = 6.8 nM). mast cell degranulating peptide (MCDP, IC50 = 41.9 microM). In Ringer solution the membrane potential of macroscopic I-channel patches was about -65 mV and depolarized under TEA and DTX. It is concluded that besides their activation during action potentials, I-channels may also stabilize the resting membrane potential.

???displayArticle.pubmedLink??? 8801354
???displayArticle.link??? J Membr Biol


Species referenced: Xenopus laevis
Genes referenced: dtx1