Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1940
Mol Cell Endocrinol 2005 May 31;2361-2:17-30. doi: 10.1016/j.mce.2005.03.010.
Show Gene links Show Anatomy links

Cloning, characterization and expression of the D2 dopamine receptor from the tilapia pituitary.

Levavi-Sivan B , Aizen J , Avitan A .


???displayArticle.abstract???
A full-length cDNA encoding a dopamine receptor (DA-R) was obtained from the pituitary of tilapia (ta). This cDNA encodes a protein of 469 amino acids that exhibits the typical arrangement of GPCR. The taDA-R shows high similarity to the DA-Rs of mullet and fugu, and over 70% similarity to Xenopus, mouse and turkey D2 DA-Rs. Northern blot analysis revealed transcript for a single transcript in the pituitary, of approximately 3 kb. In a Southern analysis, the tilapia probe recognized specific bands in the genomic DNA of both mullet and catfish, suggesting high similarity between the corresponding genes. Phylogenetic analysis clearly aligned the taDA-D2-R with all vertebrate D2-like receptor sequences cloned to date, and it was therefore designated taDA-D2-R. taDA-D2-R was transiently expressed in COS-7 cells together with the reporter construct CRE-luciferase. Addition of the specific D2 dopamine agonists quinpirole or bromocriptine, in the presence of forskolin, led to a dose-dependent decrease in forskolin-induced cAMP levels. Both agonists yielded the same maximal inhibition (around 40%). However, the potency of taDA-D2-R for bromocriptine was higher than for quinpirole. As established for mammalian D2-like receptors, stimulation of the taDA-D2-R with quinpirole triggers pertussis-toxin-sensitive Gi/o-mediated, but not Gs-mediated signaling. In contrast to mammals, PCR analysis gave no evidence of alternative splicing in taDA-D2-R. Pharmacological and genetic manipulation of the taDA-D2-R should enable us to better define its physiological role and to further explore the usefulness of fish as a model system for understanding dopaminergic function in higher organisms.

???displayArticle.pubmedLink??? 15876479
???displayArticle.link??? Mol Cell Endocrinol


Species referenced: Xenopus
Genes referenced: camp gprc6a