Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-2221
J Reprod Dev 2005 Feb 01;511:143-9. doi: 10.1262/jrd.51.143.
Show Gene links Show Anatomy links

Cdk2 activity is essential for the first to second meiosis transition in porcine oocytes.

Sugiura K , Naito K , Tojo H .


???displayArticle.abstract???
The meiotic progression of Xenopus oocytes has been suggested to depend on the activity of cyclin-dependent kinase 2 (Cdk2). We examined whether Cdk2 is involved in the regulation of mammalian oocyte meiosis by injecting porcine oocytes with anti-Cdk2 antibody. At first, the cross-reactivity of the anti-Cdk2 antibody with Cdc2 kinase was evaluated by immunoprecipitation and immunoblotting experiments using porcine granulosa cell extract, and no cross-reactivity with Cdc2 kinase was observed in the antibody used. In the anti-Cdk2 antibody-injected group, 50.7% of the oocytes were arrested in the second metaphase after 50 h of culture and this rate was significantly lower than those in the non-injected intact oocytes or the oocytes injected with mouse IgG (84.5% and 86.7%, respectively). Most of the other oocytes in the antibody-injected group formed a pronucleus without polar bodies or with only one polar body. The cyclin B1 amount in the antibody-injected and activated oocytes was dramatically decreased compared with that in the intact or mouse IgG-injected oocytes after 50 h of culture. These results suggest that Cdk2 is involved in the meiotic maturation of mammalian oocytes, and that the block of Cdk2 activity results in the failure of cyclin B1 accumulation and second meiosis induction.

???displayArticle.pubmedLink??? 15750306
???displayArticle.link??? J Reprod Dev


Species referenced: Xenopus
Genes referenced: cdk1 cdk2