Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Mol Cell Biol
1993 Aug 01;138:4776-83. doi: 10.1128/mcb.13.8.4776-4783.1993.
Show Gene links
Show Anatomy links
Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos.
Rollins MB
,
Del Rio S
,
Galey AL
,
Setzer DR
,
Andrews MT
.
???displayArticle.abstract???
The Xenopus 5S RNA gene-specific transcription factor IIIA (TFIIIA) has nine consecutive Cys2His2 zinc finger motifs. Studies were conducted in vivo to determine the contribution of each of the nine zinc fingers to the activity of TFIIIA in living cells. Nine separate TFIIIA mutants were expressed in Xenopus embryos following microinjection of their respective in vitro-derived mRNAs. Each mutant contained a single histidine-to-asparagine substitution in the third zinc ligand position of an individual zinc finger. These mutations result in structural disruption of the mutated finger with little or no effect on the other fingers. The activity of mutant proteins in vivo was assessed by measuring transcriptional activation of the endogenous 5S RNA genes. Mutants containing a substitution in zinc finger 1, 2, or 3 activate 5S RNA genes at a level which is reduced relative to that in embryos injected with the message for wild-type TFIIIA. Proteins with a histidine-to-asparagine substitution in zinc finger 5 or 7 activate 5S RNA genes at a level that is roughly equivalent to that of the wild-type protein. Zinc fingers 8 and 9 appear to be critical for the normal function of TFIIIA, since mutations in these fingers result in little or no activation of the endogenous 5S RNA genes. Surprisingly, proteins with a mutation in zinc finger 4 or 6 stimulate 5S RNA transcription at a level that is significantly higher than that mediated by similar concentrations of wild-type TFIIIA. Differences in the amount of newly synthesized 5S RNA in embryos containing the various mutant forms of TFIIIA result from differences in the relative number and/or activity of transcription complexes assembled on the endogenous 5S RNA genes and, in the case of the finger 4 and finger 6 mutants, result from increased transcriptional activation of the normally inactive oocyte-type 5S RNA genes. The remarkably high activity of the finger 6 mutant can be reproduced in vitro when transcription is carried out in the presence of 5S RNA. Disruption of zinc finger 6 results in a form of TFIIIA that exhibits reduced susceptibility to feedback inhibition by 5S RNA and therefore increases the availability of the transcription factor for transcription complex formation.
Andrews,
Transient activation of oocyte 5S RNA genes in Xenopus embryos by raising the level of the trans-acting factor TFIIIA.
1987, Pubmed,
Xenbase
Andrews,
Transient activation of oocyte 5S RNA genes in Xenopus embryos by raising the level of the trans-acting factor TFIIIA.
1987,
Pubmed
,
Xenbase
Andrews,
Coordinate inactivation of class III genes during the Gastrula-Neurula Transition in Xenopus.
1991,
Pubmed
,
Xenbase
Berg,
Zinc finger domains: hypotheses and current knowledge.
1990,
Pubmed
Berg,
Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins.
1988,
Pubmed
Birkenmeier,
A nuclear extract of Xenopus laevis oocytes that accurately transcribes 5S RNA genes.
1978,
Pubmed
,
Xenbase
Brown,
A positive transcription factor controls the differential expression of two 5S RNA genes.
1985,
Pubmed
,
Xenbase
Brown,
The primary structure of transcription factor TFIIIA has 12 consecutive repeats.
1985,
Pubmed
,
Xenbase
Cozzarelli,
Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes.
1983,
Pubmed
,
Xenbase
Del Rio,
The role of zinc fingers in transcriptional activation by transcription factor IIIA.
1993,
Pubmed
,
Xenbase
Del Río,
High yield purification of active transcription factor IIIA expressed in E. coli.
1991,
Pubmed
,
Xenbase
Dignam,
Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei.
1983,
Pubmed
Engelke,
Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes.
1980,
Pubmed
,
Xenbase
Ginsberg,
Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development.
1984,
Pubmed
,
Xenbase
Guinta,
Early replication and expression of oocyte-type 5S RNA genes in a Xenopus somatic cell line carrying a translocation.
1986,
Pubmed
,
Xenbase
Krieg,
Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs.
1984,
Pubmed
,
Xenbase
Labarca,
A simple, rapid, and sensitive DNA assay procedure.
1980,
Pubmed
Miller,
Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes.
1985,
Pubmed
,
Xenbase
Newport,
A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription.
1982,
Pubmed
,
Xenbase
Newport,
A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage.
1982,
Pubmed
,
Xenbase
Pelham,
A specific transcription factor that can bind either the 5S RNA gene or 5S RNA.
1980,
Pubmed
,
Xenbase
Peterson,
Characterization of two xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA.
1980,
Pubmed
,
Xenbase
Picard,
Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA-protein complex.
1979,
Pubmed
,
Xenbase
Ryrie,
The yeast mitochondrial ATPase complex. Subunit composition and evidence for a latent protease contaminant.
1979,
Pubmed
Sakonju,
A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5' border of the region.
1980,
Pubmed
,
Xenbase
Schlissel,
The transcriptional regulation of Xenopus 5s RNA genes in chromatin: the roles of active stable transcription complexes and histone H1.
1984,
Pubmed
,
Xenbase
Segall,
Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III.
1980,
Pubmed
Setzer,
Formation and stability of the 5 S RNA transcription complex.
1985,
Pubmed
,
Xenbase
Thiébaud,
DNA content in the genus Xenopus.
1977,
Pubmed
,
Xenbase
Towbin,
Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
1979,
Pubmed
Wakefield,
Cytoplasmic regulation of 5S RNA genes in nuclear-transplant embryos.
1983,
Pubmed
,
Xenbase
Wallace,
Protein incorporation by isolated amphibian oocytes. 3. Optimum incubation conditions.
1973,
Pubmed
,
Xenbase
Wolffe,
Developmental regulation of two 5S ribosomal RNA genes.
1988,
Pubmed
,
Xenbase
Wormington,
Onset of 5 S RNA gene regulation during Xenopus embryogenesis.
1983,
Pubmed
,
Xenbase