Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Nuclear processing of the 3'-terminal nucleotides of pre-U1 RNA in Xenopus laevis oocytes.
Yang H
,
Moss ML
,
Lund E
,
Dahlberg JE
.
???displayArticle.abstract???
U1 small nuclear RNA is synthesized as a precursor with several extra nucleotides at its 3' end. We show that in Xenopus laevis oocytes, removal of the terminal two nucleotides occurs after the RNA has transited through the cytoplasm and returned to the nucleus. The activity is controlled by an inhibitor of processing, which we call TPI, for 3'-terminal processing inhibitor. This inhibitor is sensitive to both micrococcal nuclease and trypsin treatment, indicating that it is a nucleoprotein. TPI inhibits the 3' processing of pre-U1 RNAs that have 5' ends containing m7G caps but not mature m2,2,7G caps; this finding suggests that TPI interacts directly or indirectly with the 5' end of pre-U1 RNA. The inhibition of processing by TPI, almost complete at 19 degrees C, is reversibly inactivated at slightly higher temperatures. TPI activity is solely in the soluble fraction of oocyte nuclear extracts, in contrast to the 3'-terminal processing activity, which is present in both the particulate and soluble fractions. We propose that the differential processing of the 3'-terminal nucleotides of pre-U1 RNA after its return from the cytoplasm, but not before its exit from the nucleus, may be due to the association of TPI with the m7G cap on the newly synthesized pre-U1 RNA.
Bringmann,
Purification of snRNPs U1, U2, U4, U5 and U6 with 2,2,7-trimethylguanosine-specific antibody and definition of their constituent proteins reacting with anti-Sm and anti-(U1)RNP antisera.
1983, Pubmed
Bringmann,
Purification of snRNPs U1, U2, U4, U5 and U6 with 2,2,7-trimethylguanosine-specific antibody and definition of their constituent proteins reacting with anti-Sm and anti-(U1)RNP antisera.
1983,
Pubmed
Eliceiri,
Short-lived, small RNAs in the cytoplasm of HeLa cells.
1974,
Pubmed
Feldherr,
Manual enucleation of Xenopus oocytes.
1978,
Pubmed
,
Xenbase
Fischer,
An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus.
1990,
Pubmed
,
Xenbase
Forbes,
Small nuclear RNA transcription and ribonucleoprotein assembly in early Xenopus development.
1983,
Pubmed
,
Xenbase
Ford,
A method for enucleating oocytes of Xenopus laevis.
1977,
Pubmed
,
Xenbase
Gurdon,
The use of Xenopus oocytes for the expression of cloned genes.
1983,
Pubmed
,
Xenbase
Hamm,
In vitro assembly of U1 snRNPs.
1987,
Pubmed
,
Xenbase
Hamm,
Monomethylated cap structures facilitate RNA export from the nucleus.
1990,
Pubmed
,
Xenbase
Hamm,
The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal.
1990,
Pubmed
,
Xenbase
Kazmaier,
Functional characterization of X. laevis U5 snRNA genes.
1987,
Pubmed
,
Xenbase
Krol,
The two embryonic U1 RNA genes of Xenopus laevis have both common and gene-specific transcription signals.
1985,
Pubmed
,
Xenbase
Lerner,
Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease.
1981,
Pubmed
,
Xenbase
Lund,
Nonaqueous isolation of transcriptionally active nuclei from Xenopus oocytes.
1990,
Pubmed
,
Xenbase
Lund,
In vitro synthesis of vertebrate U1 snRNA.
1989,
Pubmed
,
Xenbase
Lund,
The transcription of Xenopus laevis embryonic U1 snRNA genes changes when oocytes mature into eggs.
1987,
Pubmed
,
Xenbase
Madore,
Intracellular site of U1 small nuclear RNA processing and ribonucleoprotein assembly.
1984,
Pubmed
Mattaj,
Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding.
1986,
Pubmed
,
Xenbase
Mattaj,
Xenopus laevis U2 snRNA genes: tandemly repeated transcription units sharing 5' and 3' flanking homology with other RNA polymerase II transcribed genes.
1983,
Pubmed
,
Xenbase
Mattaj,
Nuclear segregation of U2 snRNA requires binding of specific snRNP proteins.
1985,
Pubmed
,
Xenbase
Neuman de Vegvar,
Nucleocytoplasmic transport and processing of small nuclear RNA precursors.
1990,
Pubmed
,
Xenbase
Patton,
Reconstitution of the U1 small nuclear ribonucleoprotein particle.
1987,
Pubmed
Vankan,
Domains of U4 and U6 snRNAs required for snRNP assembly and splicing complementation in Xenopus oocytes.
1990,
Pubmed
,
Xenbase
Zeller,
Nucleocytoplasmic distribution of snRNPs and stockpiled snRNA-binding proteins during oogenesis and early development in Xenopus laevis.
1983,
Pubmed
,
Xenbase
Zieve,
Cell biology of the snRNP particles.
1990,
Pubmed