Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-2421
Proc Natl Acad Sci U S A 2005 Feb 08;1026:1921-6. doi: 10.1073/pnas.0409062102.
Show Gene links Show Anatomy links

Gelsolin mediates calcium-dependent disassembly of Listeria actin tails.

Larson L , Arnaudeau S , Gibson B , Li W , Krause R , Hao B , Bamburg JR , Lew DP , Demaurex N , Southwick F .


???displayArticle.abstract???
The role of intracellular Ca2+ in the regulation of actin filament assembly and disassembly has not been clearly defined. We show that reduction of intracellular free Ca2+ concentration ([Ca2+]i) to <40 nM in Listeria monocytogenes-infected, EGFP-actin-transfected Madin-Darby canine kidney cells results in a 3-fold lengthening of actin filament tails. This increase in tail length is the consequence of marked slowing of the actin filament disassembly rate, without a significant change in assembly rate. The Ca2+-sensitive actin-severing protein gelsolin concentrates in the Listeria rocket tails at normal resting [Ca2+]i and disassociates from the tails when [Ca2+]i is lowered. Reduction in [Ca2+]i also blocks the severing activity of gelsolin, but not actin-depolymerizing factor (ADF)/cofilin microinjected into Listeria-infected cells. In Xenopus extracts, Listeria tail lengths are also calcium-sensitive, markedly shortening on addition of calcium. Immunodepletion of gelsolin, but not Xenopus ADF/cofilin, eliminates calcium-sensitive actin-filament shortening. Listeria tail length is also calcium-insensitive in gelsolin-null mouse embryo fibroblasts. We conclude that gelsolin is the primary Ca2+-sensitive actin filament recycling protein in the cell and is capable of enhancing Listeria actin tail disassembly at normal resting [Ca2+]i (145 nM). These experiments illustrate the unique and complementary functions of gelsolin and ADF/cofilin in the recycling of actin filaments.

???displayArticle.pubmedLink??? 15671163
???displayArticle.pmcLink??? PMC548556
???displayArticle.link??? Proc Natl Acad Sci U S A
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: actl6a dstn gsn

References [+] :
Abe, Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development. 1996, Pubmed, Xenbase