Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25786
Proc Natl Acad Sci U S A 1990 Jul 01;8714:5514-8.
Show Gene links Show Anatomy links

Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes.

Cicirelli MF , Tonks NK , Diltz CD , Weiel JE , Fischer EH , Krebs EG .


???displayArticle.abstract???
A protein-tyrosine-phosphatase (PTPase 1B; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), specific for phosphotyrosyl residues, was microinjected into Xenopus oocytes. This resulted in a 3- to 5-fold increase in PTPase activity over endogenous levels. The PTPase blocked the insulin-stimulated phosphorylation of tyrosyl residues on endogenous proteins, including a protein having a molecular mass in the same range as the beta subunit of the insulin or insulin-like growth factor I receptor. PTPase 1B also blocked the activation of an S6 peptide kinase--i.e., an enzyme recognizing a peptide having the sequence RRLSSLRA found in a segment of ribosomal protein S6 and known to be activated early in response to insulin. On the other hand, the insulin stimulation of an S6 kinase, detected by using 40S ribosomes as substrate, was unaffected even though PTPase 1B partially prevented the phosphorylation of ribosomal protein S6 in vivo. Mono Q chromatography of insulin-treated oocyte extracts revealed two main peaks of S6 kinase activity. Fractions from the first peak displayed S6 peptide kinase activity that was essentially abolished in profiles from PTPase 1B-injected oocytes. Material from the second peak, which was best revealed by using 40S ribosomes as substrate and had comparatively little S6 peptide kinase activity, was minimally affected by PTPase 1B. These observations suggest that at least two distinct "S6 kinases" are involved in ribosomal protein S6 phosphorylation in vivo and that the activation pathways for these enzymes differ in their sensitivity to PTPase 1B.

???displayArticle.pubmedLink??? 2164686
???displayArticle.pmcLink??? PMC54355
???displayArticle.link??? Proc Natl Acad Sci U S A
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: ins rps6ka3

References [+] :
Ahn, Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinases from Swiss 3T3 cells. 1990, Pubmed