Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
???displayArticle.abstract???
We have established the conditions for the reassociation of 5S RNA and TFIIIA to form 7S particles. We tested the ability of altered 5S RNAs to bind TFIIIA, taking advantage of the slower mobility of 7S particles compared with free 5S RNA in native polyacrylamide gels. Linker substitution mutants were constructed encompassing the entire gene, including the intragenic control region. In vitro transcripts of the linker substitution mutants were tested for their ability to bind TFIIIA to form 7S ribonucleoprotein particles. Altered 5S RNAs with base changes in or around helices IV and V, which would interfere with the normal base pairing of that region, showed decreased ability to bind TFIIIA. The transcripts of some mutant genes that were efficiently transcribed (greater than 50% of wild-type efficiency) failed to bind TFIIIA in this gel assay. In contrast, the RNA synthesized from a poorly transcribed mutant, LS 86/97, in which residues 87 to 96 of the RNA were replaced in the single-stranded loop at the base of helix V, bound TFIIIA well. The data indicate that TFIIIA binds to different domains in the 5S RNA gene and 5S RNA.
Andersen,
5S RNA structure and interaction with transcription factor A. 2. Ribonuclease probe of the 7S particle from Xenopus laevis immature oocytes and RNA exchange properties of the 7S particle.
1984, Pubmed,
Xenbase
Andersen,
5S RNA structure and interaction with transcription factor A. 2. Ribonuclease probe of the 7S particle from Xenopus laevis immature oocytes and RNA exchange properties of the 7S particle.
1984,
Pubmed
,
Xenbase
Andersen,
Characterization of RNA-protein interactions in 7 S ribonucleoprotein particles from Xenopus laevis oocytes.
1986,
Pubmed
,
Xenbase
Andersen,
5S RNA structure and interaction with transcription factor A. 1. Ribonuclease probe of the structure of 5S RNA from Xenopus laevis oocytes.
1984,
Pubmed
,
Xenbase
Bieker,
Formation of a rate-limiting intermediate in 5S RNA gene transcription.
1985,
Pubmed
,
Xenbase
Bogenhagen,
The intragenic control region of the Xenopus 5 S RNA gene contains two factor A binding domains that must be aligned properly for efficient transcription initiation.
1985,
Pubmed
,
Xenbase
Bogenhagen,
A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3' border of the region.
1980,
Pubmed
,
Xenbase
Denis,
Thesaurisomes, a novel kind of nucleoprotein particle.
1983,
Pubmed
,
Xenbase
Douthwaite,
Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases.
1982,
Pubmed
Engelke,
Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes.
1980,
Pubmed
,
Xenbase
Fairall,
Mapping of the sites of protection on a 5 S RNA gene by the Xenopus transcription factor IIIA. A model for the interaction.
1986,
Pubmed
,
Xenbase
Ginsberg,
Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development.
1984,
Pubmed
,
Xenbase
Glikin,
Chromatin assembly in Xenopus oocytes: in vitro studies.
1984,
Pubmed
,
Xenbase
Hanas,
Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene.
1983,
Pubmed
,
Xenbase
Hanas,
Cooperative model for the binding of Xenopus transcription factor A to the 5S RNA gene.
1983,
Pubmed
,
Xenbase
Hanas,
Binding of Xenopus transcription factor A to 5S RNA and to single stranded DNA.
1984,
Pubmed
,
Xenbase
Honda,
Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation.
1980,
Pubmed
,
Xenbase
Huber,
Identification of the binding site on 5S rRNA for the transcription factor IIIA: proposed structure of a common binding site on 5S rRNA and on the gene.
1986,
Pubmed
,
Xenbase
Konarska,
Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs.
1986,
Pubmed
Lassar,
Transcription of class III genes: formation of preinitiation complexes.
1983,
Pubmed
,
Xenbase
McCall,
The crystal structure of d(GGATGGGAG): an essential part of the binding site for transcription factor IIIA.
,
Pubmed
McConkey,
Transition mutations within the Xenopus borealis somatic 5S RNA gene can have independent effects on transcription and TFIIIA binding.
1987,
Pubmed
,
Xenbase
Messing,
A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments.
1982,
Pubmed
Miller,
Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes.
1985,
Pubmed
,
Xenbase
Pelham,
A specific transcription factor that can bind either the 5S RNA gene or 5S RNA.
1980,
Pubmed
,
Xenbase
Picard,
Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA-protein complex.
1979,
Pubmed
,
Xenbase
Pieler,
Analysis of the RNA structural elements involved in the binding of the transcription factor III A from Xenopus laevis.
1986,
Pubmed
,
Xenbase
Pieler,
Three-dimensional structural model of eubacterial 5S RNA that has functional implications.
1982,
Pubmed
Pieler,
Isolation and characterization of a 7 S RNP particle from mature Xenopus laevis oocytes.
1983,
Pubmed
,
Xenbase
Rhodes,
An underlying repeat in some transcriptional control sequences corresponding to half a double helical turn of DNA.
1986,
Pubmed
,
Xenbase
Romaniuk,
Characterization of the RNA binding properties of transcription factor IIIA of Xenopus laevis oocytes.
1985,
Pubmed
,
Xenbase
Sakonju,
Contact points between a positive transcription factor and the Xenopus 5S RNA gene.
1982,
Pubmed
,
Xenbase
Sakonju,
A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5' border of the region.
1980,
Pubmed
,
Xenbase
Sanger,
DNA sequencing with chain-terminating inhibitors.
1977,
Pubmed
Segall,
Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III.
1980,
Pubmed
Setzer,
Formation and stability of the 5 S RNA transcription complex.
1985,
Pubmed
,
Xenbase
Smith,
Domains of the positive transcription factor specific for the Xenopus 5S RNA gene.
1984,
Pubmed
,
Xenbase
Tinoco,
Estimation of secondary structure in ribonucleic acids.
1971,
Pubmed
Weiher,
Multiple point mutations affecting the simian virus 40 enhancer.
1983,
Pubmed