Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-34661
Neuropharmacology 2003 Nov 01;456:814-27. doi: 10.1016/s0028-3908(03)00277-6.
Show Gene links Show Anatomy links

CaVbeta subunit-mediated up-regulation of CaV2.2 currents triggered by D2 dopamine receptor activation.

Cantí C , Dolphin AC .


???displayArticle.abstract???
Voltage-dependent Ca(2+) channels (VDCCs) are subject to modulation by a number of pathways, including membrane-delimited inhibition by heterotrimeric G-proteins and modulation through phosphorylation by diverse kinases. Here we report that in the Xenopus oocyte expression system Ca(V)2.2 channels undergo a sustained, linear and irreversible run-up lasting up to 30 min, which is potentiated during G-protein-mediated inhibition by activation of co-expressed G-protein coupled receptors (GPCRs). This up-regulation is not a result of receptor desensitization, but is associated with a hyperpolarization of the voltage for activation and depends on the presence of accessory subunits such that beta subunits promote, and alpha2delta subunits oppose the current increase. We have investigated the involvement of G-proteins and found that over-expression of Galpha(o) subunits or Galpha-transducin reduced the amount of agonist-mediated up-regulation. However, we have found no evidence for the involvement of any second messenger pathways in the increase of current run-up in the presence of a GPCR agonist. Taken together, our data suggest that the effect reported herein involves an enhancement of the GTPase activity of endogenous Galpha subunits, which is triggered by GPCR activation and mediated by accessory Ca(V)beta subunits. It may involve an increased association of Ca(V)beta subunits with alpha1 subunits in the plasma membrane or trafficking of channels to the plasma membrane.

???displayArticle.pubmedLink??? 14529719
???displayArticle.link??? Neuropharmacology


Species referenced: Xenopus laevis
Genes referenced: cacna1b cav2 gnat1 gprc6a suclg1