Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-3657
J Biol Chem 2004 Jun 25;27926:27591-8. doi: 10.1074/jbc.M402813200.
Show Gene links Show Anatomy links

Two protein 4.1 domains essential for mitotic spindle and aster microtubule dynamics and organization in vitro.

Krauss SW , Lee G , Chasis JA , Mohandas N , Heald R .


???displayArticle.abstract???
Multifunctional structural proteins belonging to the 4.1 family are components of nuclei, spindles, and centrosomes in vertebrate cells. Here we report that 4.1 is critical for spindle assembly and the formation of centrosome-nucleated and motor-dependent self-organized microtubule asters in metaphase-arrested Xenopus egg extracts. Immunodepletion of 4.1 disrupted microtubule arrays and mislocalized the spindle pole protein NuMA. Remarkably, assembly was completely rescued by supplementation with a recombinant 4.1R isoform. We identified two 4.1 domains critical for its function in microtubule polymerization and organization utilizing dominant negative peptides. The 4.1 spectrin-actin binding domain or NuMA binding C-terminal domain peptides caused morphologically disorganized structures. Control peptides with low homology or variant spectrin-actin binding domain peptides that were incapable of binding actin had no deleterious effects. Unexpectedly, the addition of C-terminal domain peptides with reduced NuMA binding caused severe microtubule destabilization in extracts, dramatically inhibiting aster and spindle assembly and also depolymerizing preformed structures. However, the mutant C-terminal peptides did not directly inhibit or destabilize microtubule polymerization from pure tubulin in a microtubule pelleting assay. Our data showing that 4.1 is a crucial factor for assembly and maintenance of mitotic spindles and self-organized and centrosome-nucleated microtubule asters indicates that 4.1 is involved in regulating both microtubule dynamics and organization. These investigations underscore an important functional context for protein 4.1 in microtubule morphogenesis and highlight a previously unappreciated role for 4.1 in cell division.

???displayArticle.pubmedLink??? 15102852
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: actl6a epb41 numa1