Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
J Neurosci
2008 Mar 26;2813:3490-9. doi: 10.1523/JNEUROSCI.5727-07.2008.
Show Gene links
Show Anatomy links
Structural mechanisms underlying benzodiazepine modulation of the GABA(A) receptor.
Hanson SM
,
Czajkowski C
.
???displayArticle.abstract???
Many clinically important drugs target ligand-gated ion channels; however, the mechanisms by which these drugs modulate channel function remain elusive. Benzodiazepines (BZDs), anesthetics, and barbiturates exert their CNS actions by binding to GABA(A) receptors and modulating their function. The structural mechanisms by which BZD binding is transduced to potentiation or inhibition of GABA-induced current (I(GABA)) are essentially unknown. Here, we explored the role of the gamma(2)Q182-R197 region (Loop F/9) in the modulation of I(GABA) by positive (flurazepam, zolpidem) and negative [3-carbomethoxy-4-ethyl-6,7-dimethoxy-beta-carboline (DMCM)] BZD ligands. Each residue was individually mutated to cysteine, coexpressed with wild-type alpha(1) and beta(2) subunits in Xenopus oocytes, and analyzed using two-electrode voltage clamp. Individual mutations differentially affected BZD modulation of I(GABA). Mutations affecting positive modulation span the length of this region, whereas gamma(2)W183C at the beginning of Loop F was the only mutation that adversely affected DMCM inhibition. Radioligand binding experiments demonstrate that mutations in this region do not alter BZD binding, indicating that the observed changes in modulation result from changes in BZD efficacy. Flurazepam and zolpidem significantly slowed covalent modification of gamma(2)R197C, whereas DMCM, GABA, and the allosteric modulator pentobarbital had no effects, demonstrating that gamma(2)Loop F is a specific transducer of positive BZD modulator binding. Therefore, gamma(2)Loop F plays a key role in defining BZD efficacy and is part of the allosteric pathway allowing positive BZD modulator-induced structural changes at the BZD binding site to propagate through the protein to the channel domain.
Boileau,
The relative amount of cRNA coding for gamma2 subunits affects stimulation by benzodiazepines in GABA(A) receptors expressed in Xenopus oocytes.
2002, Pubmed,
Xenbase
Boileau,
The relative amount of cRNA coding for gamma2 subunits affects stimulation by benzodiazepines in GABA(A) receptors expressed in Xenopus oocytes.
2002,
Pubmed
,
Xenbase
Boileau,
Mapping the agonist binding site of the GABAA receptor: evidence for a beta-strand.
1999,
Pubmed
,
Xenbase
Boileau,
Molecular dissection of benzodiazepine binding and allosteric coupling using chimeric gamma-aminobutyric acidA receptor subunits.
1998,
Pubmed
,
Xenbase
Draguhn,
Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+.
1990,
Pubmed
Gao,
Agonist-mediated conformational changes in acetylcholine-binding protein revealed by simulation and intrinsic tryptophan fluorescence.
2005,
Pubmed
Gingrich,
Zn2+ inhibition of recombinant GABAA receptors: an allosteric, state-dependent mechanism determined by the gamma-subunit.
1998,
Pubmed
Graham,
Transformation of rat cells by DNA of human adenovirus 5.
1973,
Pubmed
Hibbs,
Influence of agonists and antagonists on the segmental motion of residues near the agonist binding pocket of the acetylcholine-binding protein.
2006,
Pubmed
Karlin,
Substituted-cysteine accessibility method.
1998,
Pubmed
Kloda,
Agonist-, antagonist-, and benzodiazepine-induced structural changes in the alpha1 Met113-Leu132 region of the GABAA receptor.
2007,
Pubmed
,
Xenbase
Leite,
Conformation-dependent hydrophobic photolabeling of the nicotinic receptor: electrophysiology-coordinated photochemistry and mass spectrometry.
2003,
Pubmed
Lyford,
Agonist-induced conformational changes in the extracellular domain of alpha 7 nicotinic acetylcholine receptors.
2003,
Pubmed
,
Xenbase
Mercado,
Charged residues in the alpha1 and beta2 pre-M1 regions involved in GABAA receptor activation.
2006,
Pubmed
,
Xenbase
Möhler,
A new benzodiazepine pharmacology.
2002,
Pubmed
Newell,
The GABAA receptor alpha 1 subunit Pro174-Asp191 segment is involved in GABA binding and channel gating.
2003,
Pubmed
,
Xenbase
Padgett,
The F-loop of the GABA A receptor gamma2 subunit contributes to benzodiazepine modulation.
2008,
Pubmed
,
Xenbase
Pascual,
State-dependent accessibility and electrostatic potential in the channel of the acetylcholine receptor. Inferences from rates of reaction of thiosulfonates with substituted cysteines in the M2 segment of the alpha subunit.
1998,
Pubmed
,
Xenbase
Sancar,
Structural determinants for high-affinity zolpidem binding to GABA-A receptors.
2007,
Pubmed
Sigel,
Mapping of the benzodiazepine recognition site on GABA(A) receptors.
2002,
Pubmed
Teissére,
A (beta)-strand in the (gamma)2 subunit lines the benzodiazepine binding site of the GABA A receptor: structural rearrangements detected during channel gating.
2001,
Pubmed
,
Xenbase
Thompson,
Mutagenesis and molecular modeling reveal the importance of the 5-HT3 receptor F-loop.
2006,
Pubmed
Venkatachalan,
Optimized expression vector for ion channel studies in Xenopus oocytes and mammalian cells using alfalfa mosaic virus.
2007,
Pubmed
,
Xenbase
Wagner,
Structure and dynamics of the GABA binding pocket: A narrowing cleft that constricts during activation.
2001,
Pubmed
,
Xenbase
Williams,
Gamma-aminobutyric acid increases the water accessibility of M3 membrane-spanning segment residues in gamma-aminobutyric acid type A receptors.
1999,
Pubmed
Williams,
Benzodiazepines induce a conformational change in the region of the gamma-aminobutyric acid type A receptor alpha(1)-subunit M3 membrane-spanning segment.
2000,
Pubmed
,
Xenbase
Xu,
Identification of channel-lining residues in the M2 membrane-spanning segment of the GABA(A) receptor alpha1 subunit.
1996,
Pubmed
,
Xenbase