Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
???displayArticle.abstract???
Amphibian metamorphosis serves as an excellent model to study T3 function during postembryonic development in vertebrate due to its total dependence on T3. Earlier molecular studies in the model species Xenopus laevis have led to a number of important in vivo findings on the function and mechanisms of T3 receptor (TR) action during vertebrate development. However, the lack of genomic sequence information, its tetraploid genome, and lengthy developmental cycle hinder further analyses on TR functions. In this regard, the highly related species, Xenopus tropicalis, is much more advantageous. Toward developing X. tropicalis for genome-wide and genetic studies of TR function, we analyzed the expression profiles of TRs and their heterodimerization partners, retinoid X receptors (RXRs) or 9-cis retinoic acid receptors. We show that their expression correlates with transformations in different organs and that TR/RXR heterodimers are capable of repressing and activating gene expression in vivo in the absence and presence of T3, respectively. We further demonstrate that TRs are bound to endogenous target genes in X. tropicalis tadpoles. Our results thus support a role of TRs in mediating the metamorphic effects of T3 in X. tropicalis. More importantly, the similarities in the expression and function between X. tropicalis and X. laevis TRs and RXRs as demonstrated by our study also pave the way to take advantages of existing morphological, molecular, and cellular knowledge of X. laevis development and the genetic and sequence superiority of X. tropicalis to dissect the molecular pathways governing tissue/organ-specific transformations during vertebrate postembryonic development.
Amaya,
Frog genetics: Xenopus tropicalis jumps into the future.
1998, Pubmed,
Xenbase
Amaya,
Frog genetics: Xenopus tropicalis jumps into the future.
1998,
Pubmed
,
Xenbase
Bagamasbad,
A role for basic transcription element-binding protein 1 (BTEB1) in the autoinduction of thyroid hormone receptor beta.
2008,
Pubmed
,
Xenbase
Buchholz,
A dominant-negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes.
2003,
Pubmed
,
Xenbase
Buchholz,
Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog.
2006,
Pubmed
,
Xenbase
Buchholz,
Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis.
2004,
Pubmed
,
Xenbase
Buchholz,
Gene-specific changes in promoter occupancy by thyroid hormone receptor during frog metamorphosis. Implications for developmental gene regulation.
2005,
Pubmed
,
Xenbase
Buchholz,
Spatial and temporal expression pattern of a novel gene in the frog Xenopus laevis: correlations with adult intestinal epithelial differentiation during metamorphosis.
2004,
Pubmed
,
Xenbase
Buchholz,
Pairing morphology with gene expression in thyroid hormone-induced intestinal remodeling and identification of a core set of TH-induced genes across tadpole tissues.
2007,
Pubmed
,
Xenbase
Davey,
Cloning of a thyroid hormone-responsive Rana catesbeiana c-erbA-beta gene.
1994,
Pubmed
,
Xenbase
Denver,
The molecular basis of thyroid hormone-dependent central nervous system remodeling during amphibian metamorphosis.
1998,
Pubmed
Evans,
The steroid and thyroid hormone receptor superfamily.
1988,
Pubmed
Fairclough,
An immunocytochemical analysis of the expression of thyroid hormone receptor alpha and beta proteins during natural and thyroid hormone-induced metamorphosis in Xenopus.
1997,
Pubmed
,
Xenbase
Furlow,
A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis.
2006,
Pubmed
,
Xenbase
Furlow,
In vitro and in vivo analysis of the regulation of a transcription factor gene by thyroid hormone during Xenopus laevis metamorphosis.
1999,
Pubmed
,
Xenbase
Havis,
Metamorphic T3-response genes have specific co-regulator requirements.
2003,
Pubmed
,
Xenbase
Helbing,
Sequential up-regulation of thyroid hormone beta receptor, ornithine transcarbamylase, and carbamyl phosphate synthetase mRNAs in the liver of Rana catesbeiana tadpoles during spontaneous and thyroid hormone-induced metamorphosis.
1992,
Pubmed
,
Xenbase
Iwamuro,
Contrasting patterns of expression of thyroid hormone and retinoid X receptor genes during hormonal manipulation of Xenopus tadpole tail regression in culture.
1995,
Pubmed
,
Xenbase
Kawahara,
Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis.
1991,
Pubmed
,
Xenbase
Lazar,
Thyroid hormone receptors: multiple forms, multiple possibilities.
1993,
Pubmed
Mangelsdorf,
The nuclear receptor superfamily: the second decade.
1995,
Pubmed
Matsuda,
Contrasting effects of two alternative splicing forms of coactivator-associated arginine methyltransferase 1 on thyroid hormone receptor-mediated transcription in Xenopus laevis.
2007,
Pubmed
,
Xenbase
Nakajima,
Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis.
2003,
Pubmed
,
Xenbase
Paul,
Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis.
2003,
Pubmed
,
Xenbase
Paul,
Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development.
2005,
Pubmed
,
Xenbase
Paul,
Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis.
2005,
Pubmed
,
Xenbase
Ranjan,
Transcriptional repression of Xenopus TR beta gene is mediated by a thyroid hormone response element located near the start site.
1994,
Pubmed
,
Xenbase
Sachs,
Nuclear receptor corepressor recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development.
2002,
Pubmed
,
Xenbase
Sachs,
Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development.
2000,
Pubmed
,
Xenbase
Schneider,
Regulation of c-erbA-alpha messenger RNA species in tadpole erythrocytes by thyroid hormone.
1991,
Pubmed
,
Xenbase
Schreiber,
Diverse developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor.
2001,
Pubmed
,
Xenbase
Shi,
Biphasic intestinal development in amphibians: embryogenesis and remodeling during metamorphosis.
1996,
Pubmed
,
Xenbase
Shi,
Tissue-dependent developmental expression of a cytosolic thyroid hormone protein gene in Xenopus: its role in the regulation of amphibian metamorphosis.
1994,
Pubmed
,
Xenbase
Shi,
Cloning and characterization of the ribosomal protein L8 gene from Xenopus laevis.
1994,
Pubmed
,
Xenbase
Tata,
Gene expression during metamorphosis: an ideal model for post-embryonic development.
1993,
Pubmed
Tomita,
Fusion protein of retinoic acid receptor alpha with promyelocytic leukemia protein or promyelocytic leukemia zinc finger protein recruits N-CoR-TBLR1 corepressor complex to repress transcription in vivo.
2003,
Pubmed
,
Xenbase
Tomita,
Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development.
2004,
Pubmed
,
Xenbase
Tsai,
Molecular mechanisms of action of steroid/thyroid receptor superfamily members.
1994,
Pubmed
Wong,
Coordinated regulation of and transcriptional activation by Xenopus thyroid hormone and retinoid X receptors.
1995,
Pubmed
,
Xenbase
Yaoita,
A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis.
1990,
Pubmed
,
Xenbase
Yaoita,
Xenopus laevis alpha and beta thyroid hormone receptors.
1990,
Pubmed
,
Xenbase
Yen,
Physiological and molecular basis of thyroid hormone action.
2001,
Pubmed