Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-39138
Neuroscience 2009 Mar 17;1592:618-28. doi: 10.1016/j.neuroscience.2008.12.047.
Show Gene links Show Anatomy links

Site-specific regulation of CA(V)2.2 channels by protein kinase C isozymes betaII and epsilon.

Rajagopal S , Fang H , Oronce CI , Jhaveri S , Taneja S , Dehlin EM , Snyder SL , Sando JJ , Kamatchi GL .


???displayArticle.abstract???
Ca(v)2.2 high voltage-gated calcium channels are regulated by phorbol-12-myristae, 13-acetate (PMA) via Ser/Thr protein kinase C (PKC) phosphorylation sites in the I-II linker and C-terminus of the alpha(1) 2.2 subunit. Here we show that PMA enhancement of Ca(v)2.2 currents expressed in Xenopus oocytes can be blocked by inhibitors of PKC betaII or PKC epsilon isozymes, as shown previously for Ca(v)2.3 currents, and that microinjection of PKC betaII or PKC epsilon isozymes in the oocytes expressing the WT Ca(v)2.2 channels increases the basal barium current (I(Ba)). The I-V plot shows a large increase in current amplitude with PKC betaII and PKC epsilon isozymes with only a small shift in the peak I(Ba) in the hyperpolarizing direction. The potentiation of Ca(v)2.2 currents by microinjection of PKC betaII and PKC epsilon isozymes was not altered by the inhibition of G proteins with GDPbetaS. The combination of isozyme specific inhibitors with previously generated Ser/Thr to Ala mutants of alpha(1) 2.2 subunit revealed that PKC betaII or PKC epsilon isozymes (but not PKC alpha or delta) can provide full enhancement through the stimulatory site (Thr-422) in the I-II linker but that PKC epsilon is better at decreasing channel activity through the inhibitory site Ser-425. The enhancing effect of PKC betaII or epsilon at Thr-422 is dominant over the inhibitory effect at Ser-425. Injected PKC betaII also enhances Ca(v)2.2 current when any of the potential stimulatory sites (Ser-1757, Ser-2108 and Ser-2132) are available in the C-terminus. PKC epsilon provides lesser enhancement with C-terminal sites and only with Ser-2108 and Ser-2132. Sites Ser-1757 and Ser-2132, but not Ser-2108, are dominant over the inhibitory site Ser-425. Collectively, these results reveal a hierarchy of regulatory sites in Ca(v)2.2 channels. Site-specific regulation by different PKC isozymes may allow graded levels of channel activation and susceptibility or resistance to subsequent stimulatory events.

???displayArticle.pubmedLink??? 19167461
???displayArticle.link??? Neuroscience
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: cacna1b