Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-41645
Biochemistry 2010 Mar 30;4912:2732-40. doi: 10.1021/bi9016654.
Show Gene links Show Anatomy links

An RNA aptamer with high affinity and broad specificity for zinc finger proteins.

Weiss TC , Zhai GG , Bhatia SS , Romaniuk PJ .


???displayArticle.abstract???
A class of RNA aptamers that demonstrates a high affinity for a large variety of C(2)H(2) zinc finger proteins was isolated from a library of random RNA sequences by the zinc finger protein TFIIIA. These aptamers have one or more copies of the consensus sequence GGGUGGG, which is part of a putative hairpin loop in the proposed structure of the most abundant aptamer, RNA1. Binding of zinc finger proteins to RNA1 relies upon zinc-dependent folding of the protein, the affinity of an individual protein for RNA1 being determined by the number of tandem zinc finger motifs. The properties of RNA1 were compared to the properties of two other aptamers from the same selection experiment: RNA21, which binds to some but not all zinc finger proteins tested, and RNA22, which binds only to the 5S rRNA binding zinc finger proteins TFIIIA and p43. The binding of three different zinc finger proteins to RNA1 was compared, and the results indicate that the RNA1-protein interaction occurs by several distinct mechanisms. Mutagenesis of RNA1 confirmed that the GGGUGGG consensus sequence presented in a hairpin conformation is required for high-affinity binding of zinc finger proteins.

???displayArticle.pubmedLink??? 20175561
???displayArticle.link??? Biochemistry


Species referenced: Xenopus
Genes referenced: gtf3a