Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-41973
Comp Biochem Physiol A Mol Integr Physiol 2010 Dec 01;1574:382-91. doi: 10.1016/j.cbpa.2010.08.018.
Show Gene links Show Anatomy links

Onset and early development of hypoxic ventilatory responses and branchial neuroepithelial cells in Xenopus laevis.

Pan TC , Burggren WW .


???displayArticle.abstract???
Onset and ontogeny of the O₂ chemoreceptive control of ventilation was investigated in Xenopus laevis. The density and size of branchial serotonin-immunoreactive neuroepithelial cells (5-HT-IR NECs) were also determined using confocal immunofluorescent microscopy. Larvae started gill ventilation at 3 days post-fertilization (dpf), and, at this early stage, acute hypoxic exposure produced an increase in frequency from 28 ± 4 to 60 ± 2 beats x min⁻¹. Concurrent with the onset of ventilatory responses, 5-HT-IR NECs appeared in the gill filament bud. Lung ventilation began at 5 dpf and exhibited a 3-fold increase in frequency during acute hypoxia. At 10 dpf, gill ventilatory sensitivity to hypoxia increased, as did NEC density, from 15 ± 1 (5 dpf) to 29 ± 2 (10 dpf) cells x mm of filament⁻¹. Unlike ventilation frequency, gill ventilation amplitude and lung expired volume were unaltered by acute hypoxia. Chronic exposure to moderate hypoxia, at a P(O₂) of 110 mmHg, attenuated acute responses to moderate hypoxia at 10 and 14 dpf but had no effect at more severe hypoxia or at other stages. Chronic hypoxia also stimulated 5-HT-IR NECs growth at 21 dpf. Collectively, larvae at 5 dpf exhibited strong O₂-driven gill and lung ventilatory responses, and between 10 and 21 dpf, the early hypoxic responses can be shaped by the ambient P(O₂).

???displayArticle.pubmedLink??? 20728560
???displayArticle.link??? Comp Biochem Physiol A Mol Integr Physiol