Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Proc Natl Acad Sci U S A
2014 Apr 01;11113:4868-73. doi: 10.1073/pnas.1322123111.
Show Gene links
Show Anatomy links
Functional regulation of BK potassium channels by γ1 auxiliary subunits.
Gonzalez-Perez V
,
Xia XM
,
Lingle CJ
.
???displayArticle.abstract???
Many K(+) channels are oligomeric complexes with intrinsic structural symmetry arising from the homo-tetrameric core of their pore-forming subunits. Allosteric regulation of tetramerically symmetric proteins, whether by intrinsic sensing domains or associated auxiliary subunits, often mirrors the fourfold structural symmetry. Here, through patch-clamp recordings of channel population ensembles and also single channels, we examine regulation of the Ca(2+)- and voltage-activated large conductance Ca(2+)-activated K(+) (BK) channel by associated γ1-subunits. Through expression of differing ratios of γ1:α-subunits, the results reveal an all-or-none functional regulation of BK channels by γ-subunits: channels either exhibit a full gating shift or no shift at all. Furthermore, the γ1-induced shift exhibits a state-dependent labile behavior that recapitulates the fully shifted or unshifted behavior. The γ1-induced shift contrasts markedly to the incremental shifts in BK gating produced by 1-4 β-subunits and adds a new layer of complexity to the mechanisms by which BK channel functional diversity is generated.
Ding,
Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and noninactivating subunits.
1998, Pubmed
Ding,
Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and noninactivating subunits.
1998,
Pubmed
Goodsell,
Structural symmetry and protein function.
2000,
Pubmed
Gulbis,
Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels.
2000,
Pubmed
,
Xenbase
Horrigan,
Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
2002,
Pubmed
,
Xenbase
Horrigan,
Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+).
1999,
Pubmed
,
Xenbase
Hoshi,
Transduction of voltage and Ca2+ signals by Slo1 BK channels.
2013,
Pubmed
Leonetti,
Functional and structural analysis of the human SLO3 pH- and voltage-gated K+ channel.
2012,
Pubmed
,
Xenbase
McManus,
Functional role of the beta subunit of high conductance calcium-activated potassium channels.
1995,
Pubmed
,
Xenbase
Meera,
A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin.
2000,
Pubmed
,
Xenbase
Orio,
Structural determinants for functional coupling between the beta and alpha subunits in the Ca2+-activated K+ (BK) channel.
2006,
Pubmed
,
Xenbase
Orio,
New disguises for an old channel: MaxiK channel beta-subunits.
2002,
Pubmed
Schreiber,
A novel calcium-sensing domain in the BK channel.
1997,
Pubmed
,
Xenbase
Shen,
Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation.
1994,
Pubmed
,
Xenbase
Uebele,
Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel.
2000,
Pubmed
van Huizen,
Images of oligomeric Kv beta 2, a modulatory subunit of potassium channels.
1999,
Pubmed
Wallner,
Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog.
1999,
Pubmed
,
Xenbase
Wang,
Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels.
2002,
Pubmed
,
Xenbase
Wang,
Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits.
2007,
Pubmed
,
Xenbase
Xia,
Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit.
2000,
Pubmed
,
Xenbase
Xia,
Multiple regulatory sites in large-conductance calcium-activated potassium channels.
2002,
Pubmed
Xia,
Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues.
2003,
Pubmed
,
Xenbase
Xia,
Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells.
1999,
Pubmed
,
Xenbase
Yan,
LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium.
2010,
Pubmed
Yan,
BK potassium channel modulation by leucine-rich repeat-containing proteins.
2012,
Pubmed
Yang,
LRRC52 (leucine-rich-repeat-containing protein 52), a testis-specific auxiliary subunit of the alkalization-activated Slo3 channel.
2011,
Pubmed