Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Anesthesiology
2016 Jan 01;1241:89-100. doi: 10.1097/ALN.0000000000000934.
Show Gene links
Show Anatomy links
A Cysteine Substitution Probes β3H267 Interactions with Propofol and Other Potent Anesthetics in α1β3γ2L γ-Aminobutyric Acid Type A Receptors.
Stern AT
,
Forman SA
.
???displayArticle.abstract???
Anesthetic contact residues in γ-aminobutyric acid type A (GABAA) receptors have been identified using photolabels, including two propofol derivatives. O-propofol diazirine labels H267 in β3 and α1β3 receptors, whereas m-azi-propofol labels other residues in intersubunit clefts of α1β3. Neither label has been studied in αβγ receptors, the most common isoform in mammalian brain. In αβγ receptors, other anesthetic derivatives photolabel m-azi-propofol-labeled residues, but not βH267. The authors' structural homology model of α1β3γ2L receptors suggests that β3H267 may abut some of these sites. Substituted cysteine modification-protection was used to test β3H267C interactions with four potent anesthetics: propofol, etomidate, alphaxalone, and R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid (mTFD-MPAB). The authors expressed α1β3γ2L or α1β3H267Cγ2L GABAA receptors in Xenopus oocytes. The authors used voltage clamp electrophysiology to assess receptor sensitivity to γ-aminobutyric acid (GABA) and anesthetics and to compare p-chloromercuribenzenesulfonate modification rates with GABA versus GABA plus anesthetics. Enhancement of low GABA (eliciting 5% of maximum) responses by equihypnotic concentrations of all four anesthetics was similar in α1β3γ2L and α1β3H267Cγ2L receptors (n > 3). Direct activation of α1β3H267Cγ2L receptors, but not α1β3γ2L, by mTFD-MPAB and propofol was significantly greater than the other anesthetics. Modification of β3H267C by p-chloromercuribenzenesulfonate (n > 4) was rapid and accelerated by GABA. Only mTFD-MPAB slowed β3H267C modification (approximately twofold; P = 0.011). β3H267 in α1β3γ2L GABAA receptors contacts mTFD-MPAB, but not propofol. The study results suggest that β3H267 is near the periphery of one or both transmembrane intersubunit (α+/β- and γ+/β-) pockets where both mTFD-MPAB and propofol bind.
Alkire,
Consciousness and anesthesia.
2008, Pubmed
Alkire,
Consciousness and anesthesia.
2008,
Pubmed
Althoff,
X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors.
2014,
Pubmed
Bai,
The general anesthetic propofol slows deactivation and desensitization of GABA(A) receptors.
1999,
Pubmed
Bali,
Defining the propofol binding site location on the GABAA receptor.
2004,
Pubmed
,
Xenbase
Baumann,
Forced subunit assembly in alpha1beta2gamma2 GABAA receptors. Insight into the absolute arrangement.
2002,
Pubmed
,
Xenbase
Bertaccini,
Assessment of homology templates and an anesthetic binding site within the γ-aminobutyric acid receptor.
2013,
Pubmed
Bocquet,
X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation.
2009,
Pubmed
Chen,
Neurosteroid analog photolabeling of a site in the third transmembrane domain of the β3 subunit of the GABA(A) receptor.
2012,
Pubmed
Chiara,
Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor.
2013,
Pubmed
Chiara,
Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [³H]TDBzl-etomidate, a photoreactive etomidate analogue.
2012,
Pubmed
Desai,
Gamma-amino butyric acid type A receptor mutations at beta2N265 alter etomidate efficacy while preserving basal and agonist-dependent activity.
2009,
Pubmed
,
Xenbase
Dunne,
An N-terminal histidine regulates Zn(2+) inhibition on the murine GABA(A) receptor beta3 subunit.
2002,
Pubmed
,
Xenbase
Eaton,
Mutational Analysis of the Putative High-Affinity Propofol Binding Site in Human β3 Homomeric GABAA Receptors.
2015,
Pubmed
,
Xenbase
Franks,
Structural comparisons of ligand-gated ion channels in open, closed, and desensitized states identify a novel propofol-binding site on mammalian γ-aminobutyric acid type A receptors.
2015,
Pubmed
Goren,
Loose protein packing around the extracellular half of the GABA(A) receptor beta1 subunit M2 channel-lining segment.
2004,
Pubmed
,
Xenbase
Hanwell,
Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.
2012,
Pubmed
Hibbs,
Principles of activation and permeation in an anion-selective Cys-loop receptor.
2011,
Pubmed
Hilf,
Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel.
2009,
Pubmed
Hosie,
Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites.
2006,
Pubmed
Jayakar,
Multiple propofol-binding sites in a γ-aminobutyric acid type A receptor (GABAAR) identified using a photoreactive propofol analog.
2014,
Pubmed
Jurd,
General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit.
2003,
Pubmed
Karlin,
Substituted-cysteine accessibility method.
1998,
Pubmed
Krasowski,
4D-QSAR analysis of a set of propofol analogues: mapping binding sites for an anesthetic phenol on the GABA(A) receptor.
2002,
Pubmed
,
Xenbase
Li,
Numerous classes of general anesthetics inhibit etomidate binding to gamma-aminobutyric acid type A (GABAA) receptors.
2010,
Pubmed
Li,
Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog.
2006,
Pubmed
Mascia,
Specific binding sites for alcohols and anesthetics on ligand-gated ion channels.
2000,
Pubmed
,
Xenbase
McCracken,
A transmembrane amino acid in the GABAA receptor β2 subunit critical for the actions of alcohols and anesthetics.
2010,
Pubmed
,
Xenbase
Mihic,
Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors.
1997,
Pubmed
,
Xenbase
Miller,
Crystal structure of a human GABAA receptor.
2014,
Pubmed
Olsen,
GABA A receptors: subtypes provide diversity of function and pharmacology.
2009,
Pubmed
Parikh,
Structure of the M2 transmembrane segment of GLIC, a prokaryotic Cys loop receptor homologue from Gloeobacter violaceus, probed by substituted cysteine accessibility.
2011,
Pubmed
Ruesch,
An allosteric coagonist model for propofol effects on α1β2γ2L γ-aminobutyric acid type A receptors.
2012,
Pubmed
,
Xenbase
Rüsch,
Gating allosterism at a single class of etomidate sites on alpha1beta2gamma2L GABA A receptors accounts for both direct activation and agonist modulation.
2004,
Pubmed
,
Xenbase
Rüsch,
Classic benzodiazepines modulate the open-close equilibrium in alpha1beta2gamma2L gamma-aminobutyric acid type A receptors.
2005,
Pubmed
,
Xenbase
Stewart,
State-dependent etomidate occupancy of its allosteric agonist sites measured in a cysteine-substituted GABAA receptor.
2013,
Pubmed
,
Xenbase
Stewart,
Cysteine substitutions define etomidate binding and gating linkages in the α-M1 domain of γ-aminobutyric acid type A (GABAA) receptors.
2013,
Pubmed
,
Xenbase
Stewart,
Mutations at beta N265 in γ-aminobutyric acid type A receptors alter both binding affinity and efficacy of potent anesthetics.
2014,
Pubmed
,
Xenbase
Stewart,
Tryptophan mutations at azi-etomidate photo-incorporation sites on alpha1 or beta2 subunits enhance GABAA receptor gating and reduce etomidate modulation.
2008,
Pubmed
,
Xenbase
Velisetty,
Conformational transitions underlying pore opening and desensitization in membrane-embedded Gloeobacter violaceus ligand-gated ion channel (GLIC).
2012,
Pubmed
Wilkins,
Identification of a beta subunit TM2 residue mediating proton modulation of GABA type A receptors.
2002,
Pubmed
Wooltorton,
Identification of a Zn2+ binding site on the murine GABAA receptor complex: dependence on the second transmembrane domain of beta subunits.
1997,
Pubmed
,
Xenbase
Yip,
A propofol binding site on mammalian GABAA receptors identified by photolabeling.
2013,
Pubmed
Zeller,
Identification of a molecular target mediating the general anesthetic actions of pentobarbital.
2007,
Pubmed