XB-ART-54112
Math Med Biol
2018 Mar 16;35suppl_1:1-27. doi: 10.1093/imammb/dqx008.
Show Gene links
Show Anatomy links
Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model.
Nestor-Bergmann A
,
Goddard G
,
Woolner S
,
Jensen OE
.
???displayArticle.abstract???
Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted.
???displayArticle.pubmedLink??? 28992197
???displayArticle.pmcLink??? PMC5978812
???displayArticle.link??? Math Med Biol
???displayArticle.grants??? [+]
Genes referenced: ddx59 grap2
???attribute.lit??? ???displayArticles.show???
![]() |
Fig. 1. Experimental setup and data analysis. (a) Animal cap tissue was dissected from stage-10 Xenopus laevis embryos and cultured on PDMS membrane. (b) Side-view confocal image of the animal cap (top:apical; bottom:basal), stained for microtubules (red), beta-catenin (green) and DNA (blue). A mitotic spindle is visible in the centremost apical cell. The animal cap is a multi-layered epithelial tissue; we analyse just the outer, apical, cell layer. (c) The apical cell layer of the animal cap tissue is imaged live using confocal microscopy (green, GFP-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document}-tubulin; red, cherry-histone2B). (d) The cell edges are manually traced and cell shapes are derived computationally, being polygonized using the positions of cell junctions. (e) Mean normalized area as a function of polygonal class showing mean and one standard deviation, from experiments (solid and shaded) and simulation (dashed) with parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Lambda$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Gamma$\end{document} as shown with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_{\mathrm{ext}}=0$\end{document}. Cell areas were normalized relative to the mean of each experiment. (f) Circularity as a function of polygonal class showing mean and one standard deviation, from experiments (solid and shaded) and simulation (dashed) using the same parameters as in (e). (g) Proportions of total cells in each polygonal class in experiments (left bar) and simulations (right bar). Error bars represent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$95\%$\end{document} confidence intervals calculated from bootstrapping the data. (Colour in online.) |
![]() |
Fig. 2. Representation of disordered cell geometry. Cell \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} has its centroid at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathbf{R}_{\alpha}$\end{document} relative to a fixed origin, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathscr{O}$\end{document}. The position of vertex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$i$\end{document} of cell \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} is given equivalently via \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathbf{R}^{i}_{\alpha}$\end{document}, relative to the centroid, or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathbf{R}^{j}$\end{document}, relative to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathscr{O}$\end{document}. For a vertex (trijunction) at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathbf{R}^{j}$\end{document}, there exist three vectors, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathbf{R}^{i}_{\alpha}, \mathbf{R}^{i^{\prime}}_{\alpha^{\prime}}, \mathbf{R}^{i^{\prime\prime}}_{\alpha^{\prime\prime}}$\end{document} for cells, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha, \alpha^{\prime}, \alpha^{\prime\prime}$\end{document}, pointing to the same vertex. Cell properties, such as area and tangents along edges, are defined relative to the cell centroid. (Colour in online.) |
![]() |
Fig. 3. Computational validation of the predicted alignment between principal axis of stress and shape, for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda, \Gamma) = (-0.2, 0.1)$\end{document}. The initial cell array was generated using a Voronoi tessellation and then relaxed to equilibrium using periodic boundary conditions. The eigenvectors corresponding the the principal eigenvalue of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\boldsymbol{\sigma}_{\alpha}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathsf{S}$\end{document} are plotted in black and yellow, respectively. Darker cells have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_{\alpha}^{\text{eff}} > 0$\end{document} (net tension); lighter cells have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_{\alpha}^{\text{eff}} < 0$\end{document} (net compression). (Colour in online.) |
![]() |
Fig. 4. (a) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda, \Gamma)$\end{document}-parameter space, showing boundaries for a uniform hexagonal array (following Farhadifar et al., 2007). Region I represents a âsoftâ network with no shear resistance, bounded by (3.38); \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P^{\text{eff}}=0$\end{document} has a single positive root in region II\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$_a$\end{document} and two positive roots in region \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\text{II}_{b}$\end{document}. The network collapses in Region III, which is bounded by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Lambda=0$\end{document} and (3.39). The transformation (3.40) allows \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda,\Gamma)$\end{document} to be replaced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda^\dagger,\Gamma^\dagger)$\end{document} in order to describe cases for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_{\mathrm{ext}}\neq 0$\end{document}. (b,c) Classification of cell stress configurations in a disordered monolayer, showing representative cell shapes. Larger (smaller) arrows indicate the orientation of the eigenvector associated with the eigenvalue of the stress tensor having larger (smaller) magnitude, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\vert\sigma_{\alpha,1}\vert\geq \vert\sigma _{\alpha, 2}\vert \geq 0$\end{document}. Inward- (outward)-pointing arrows indicate the tension (compression) generated by the cell. (Colour in online.) |
![]() |
Fig. 5. (a, c) Curves show \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P^{\text{eff}}_N$\end{document} defined in (3.37) plotted against cell area for perfect N-gons, using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda, \Gamma) = (-0.5, 0.15)$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$L_0=3.33$\end{document}, a, b) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda, \Gamma) = (0.2, 0.048)$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$L_0=-2.08$\end{document}, c, d). Symbols show \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P^{\text{eff}}_\alpha$\end{document} defined in (3.24) for computationally simulated cells, with shapes displayed in (b,d). Darker (lighter) cells in (b,d) have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_{\alpha}^{\text{eff}} > 0$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$<0$\end{document}). (Colour in online.) |
![]() |
Fig. 6. (a) A map of the variance of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P^{\text{eff}}_\alpha$\end{document} at discrete locations within region II of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda,\Gamma)$\end{document}-parameter space. Lines show the boundaries for a hexagonal network, as in Fig. 4(a). The dark squares along the region II\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$_b$\end{document}/III boundary are artefacts, reflecting the co-existence of cells with small and large areas near this boundary. Each datapoint is taken from 5 realizations of a monolayer with 800 cells. (b) An individual monolayer realization for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Lambda=-0.1$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Gamma=0.1$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_{\mathrm{ext}}=0$\end{document} with 800 cells. Darker (lighter) shading denotes cells with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P^{\text{eff}}>0$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(<0)$\end{document}. Line segments indicate the principal axis of the shape and stress tensor for each cell, coincident with the heavy arrows in Fig. 4(b), i.e. aligned with the stress eigenvector associated with the eigenvalue of larger magnitude. (c) A similar example for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Lambda=-1.11$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Gamma=0.15$\end{document}. (Colour in online.) |
![]() |
Fig. 7. Dependence of cell geometry on model parameters, using five unique simulations with 800 cells (4000 cells total) in a periodic box under zero net external pressure. (a) Mean circularity of cells per polygonal class, at parameter values indicated by corresponding symbols in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda,\Gamma)$\end{document}-parameter space in (b,c). (b) The heat map shows mean circularity of all cells in a simulation, using the same realizations used in Fig. 6. Insets show two example configurations. (c) Mean cell area per polygonal classes, for the same set of parameters. (d) Heat map of mean area of all cells across \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda,\Gamma)$\end{document}-parameter space. (e) Mean cell area per polygonal class for given parameters, normalised by the mean area of hexagons. (f) Total area of all cells in each polygonal class, such that the sum of all points equals the area of the box. (Colour in online.) |
![]() |
Fig. 8. Visualizing the effect of peripheral stress on network packing geometry. 800 cells were simulated in boxes of width \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathscr{L}=10, 20, \dots, 90$\end{document} leading to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P^{\text{eff}}$\end{document} distributions with means shown in (a). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_{\text{ext}}=0$\end{document} for a box width of 20. The corresponding means of the distributions of circularities are shown in (b). The variance of the distributions at different box widths are given in (c), for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_\alpha^{\text{eff}}$\end{document} (solid) and circularity (dashed). Model parameters used were \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda,\Gamma)=(-0.1,0.1)$\end{document} for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$A_6^*=0.446$\end{document}. Larger box sizes have lower cell density, higher mean \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P^{\text{eff}}$\end{document}, lower mean circularity and greater variability. (Colour in online.) |
![]() |
Fig. 9. Results of parameter fitting. (a) Heat map showing value of the likelihood function (4.1) across a uniform grid in valid parameter space. The simulated monolayers used were the same as those in Figs 6 and 7. For each monolayer, the mean areas per polygonal class were calculated and used to evaluate (4.1). The likelihood was maximized at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda, \Gamma)\approx (-0.26, 0.17)$\end{document}, marked by the circular symbol; a corresponding monolayer is shown in (b), with cells having \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_\alpha^{\text{eff}}>0$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$<0$\end{document}) shaded dark (light). (c, d) Distributions of area and circularity across polygonal classes for simulations with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\Lambda^\dagger,\Gamma^\dagger)=(-0.259,0.172)$\end{document} for increasing values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_{\mathrm{ext}}$\end{document}. (Colour in online.) |
![]() |
Fig. D1. (a) An example of force chains in a monolayer, with 800 cells and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Lambda=-0.1$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Gamma=0.1$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P_{\mathrm{ext}=0}$\end{document}. Darker (lighter) shading denotes cells with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$P^{\text{eff}}>0$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(<0)$\end{document}. Short line segments indicate the principal axis of the stress tensor for each cell (see Fig. 4). Long red lines identify chains satisfying (D.1) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\theta = \pi / 4$\end{document}. (bâe) identify force chains. Red lines represent vectors running between cell centroids. Black double sided arrows indicate the principal axis of stress. b) Cell \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} has been selected to start a chain, and cells \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha^{\prime}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha^{\prime\prime}$\end{document} are found to satisfy (D.1c). (c-e) Only \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha^{\prime\prime}$\end{document} is selected to join the chain as it satisfies both (D.1a) (c) and (D.1b) (d). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha^{\prime}$\end{document} is excluded because is fails (D.1a) (c), despite satisfying (D.1b) (e). (Colour in online.) |
References [+] :
Barton,
Active Vertex Model for cell-resolution description of epithelial tissue mechanics.
2017, Pubmed
Barton, Active Vertex Model for cell-resolution description of epithelial tissue mechanics. 2017, Pubmed
Bielmeier, Interface Contractility between Differently Fated Cells Drives Cell Elimination and Cyst Formation. 2016, Pubmed
Blanchard, Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. 2009, Pubmed
Blanchard, Taking the strain: quantifying the contributions of all cell behaviours to changes in epithelial shape. 2017, Pubmed
Brodland, CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries. 2014, Pubmed
Brodland, Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila. 2010, Pubmed
Campinho, Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. 2013, Pubmed
Chiou, Mechanical stress inference for two dimensional cell arrays. 2012, Pubmed
Collinet, Local and tissue-scale forces drive oriented junction growth during tissue extension. 2015, Pubmed
Edwards, Biomechanical modelling of colorectal crypt budding and fission. 2007, Pubmed
Etournay, Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. 2015, Pubmed
Farhadifar, The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. 2007, Pubmed
Fink, External forces control mitotic spindle positioning. 2011, Pubmed
Fletcher, Vertex models of epithelial morphogenesis. 2014, Pubmed
Fozard, Continuum approximations of individual-based models for epithelial monolayers. 2010, Pubmed
Gibson, The emergence of geometric order in proliferating metazoan epithelia. 2006, Pubmed
Graner, Simulation of biological cell sorting using a two-dimensional extended Potts model. 1992, Pubmed
Graner, Discrete rearranging disordered patterns, part I: robust statistical tools in two or three dimensions. 2008, Pubmed
Guillot, Mechanics of epithelial tissue homeostasis and morphogenesis. 2013, Pubmed
Guirao, Unified quantitative characterization of epithelial tissue development. 2015, Pubmed
Gupta, Excess wing in glass-forming glycerol and LiCl-glycerol mixtures detected by neutron scattering. 2015, Pubmed
Hannezo, Theory of epithelial sheet morphology in three dimensions. 2014, Pubmed , Xenbase
Heller, EpiTools: An Open-Source Image Analysis Toolkit for Quantifying Epithelial Growth Dynamics. 2016, Pubmed
Hilgenfeldt, Physical modeling of cell geometric order in an epithelial tissue. 2008, Pubmed
Hoh, Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. 1994, Pubmed
Honda, How much does the cell boundary contract in a monolayered cell sheet? 1980, Pubmed
Huang, Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. 2000, Pubmed
Huang, The structural and mechanical complexity of cell-growth control. 1999, Pubmed
Hutson, Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. 2003, Pubmed
Ishihara, From cells to tissue: A continuum model of epithelial mechanics. 2017, Pubmed , Xenbase
Ishihara, Bayesian inference of force dynamics during morphogenesis. 2012, Pubmed
Ishimoto, Bubbly vertex dynamics: A dynamical and geometrical model for epithelial tissues with curved cell shapes. 2014, Pubmed
Jason Gao, Embryo as an active granular fluid: stress-coordinated cellular constriction chains. 2016, Pubmed
Käfer, Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina. 2007, Pubmed
Kiehart, Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. 2000, Pubmed
Lecuit, Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. 2007, Pubmed
Majmudar, Contact force measurements and stress-induced anisotropy in granular materials. 2005, Pubmed
Mao, Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. 2013, Pubmed
Martin, Pulsed contractions of an actin-myosin network drive apical constriction. 2009, Pubmed
Minc, Influence of cell geometry on division-plane positioning. 2011, Pubmed
Murisic, From discrete to continuum models of three-dimensional deformations in epithelial sheets. 2015, Pubmed
Nelson, Growth-induced buckling of an epithelial layer. 2011, Pubmed
Norris, Mechanics of elastic networks. 2014, Pubmed
Okuda, Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis. 2015, Pubmed
Okuda, Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based on a reversible network reconnection framework. 2013, Pubmed
Osborne, A hybrid approach to multi-scale modelling of cancer. 2010, Pubmed
Peters, Characterization of force chains in granular material. 2005, Pubmed
Rauzi, Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. 2008, Pubmed
Shraiman, Mechanical feedback as a possible regulator of tissue growth. 2005, Pubmed
Spencer, Vertex stability and topological transitions in vertex models of foams and epithelia. 2017, Pubmed
Staple, Mechanics and remodelling of cell packings in epithelia. 2010, Pubmed
Streichan, Spatial constraints control cell proliferation in tissues. 2014, Pubmed
Sugimura, The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing. 2013, Pubmed
Sugimura, Measuring forces and stresses in situ in living tissues. 2016, Pubmed
Tetley, Unipolar distributions of junctional Myosin II identify cell stripe boundaries that drive cell intercalation throughout Drosophila axis extension. 2016, Pubmed
Théry, Cell shape and cell division. 2006, Pubmed
Tlili, Colloquium: Mechanical formalisms for tissue dynamics. 2015, Pubmed
Wozniak, Mechanotransduction in development: a growing role for contractility. 2009, Pubmed
Wyatt, Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis. 2015, Pubmed
Xu, Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch. 2016, Pubmed
Xu, How do changes at the cell level affect the mechanical properties of epithelial monolayers? 2015, Pubmed