Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-60617
J Vis Exp 2024 Feb 16;204:. doi: 10.3791/66489.
Show Gene links Show Anatomy links

Techniques for Rapidly Sampling Six Crucial Organs in Adult Xenopus.

Jonas-Closs RA , Peshkin L .


???displayArticle.abstract???
Xenopus has been a powerful model organism for understanding vertebrate development and disease for over a hundred years. While experimental analysis and dissection techniques of the embryo have been well documented, descriptions of adult Xenopus structures and organs, together with techniques for working with adults, have not been updated to take into consideration the requirements of such modern approaches as quantitative proteomics and single-cell transcriptomics. The cell-type and gene-centric perspectives require contrasting observations in embryonic stages to those in adult tissues. The organs of the larva undergo significant changes in their overall structure, morphology, and anatomical location all along the larval to adult transition, most notably during massive metamorphosis remodeling. Establishing robust standards for organ identification and dissection is crucial to ensure datasets resulting from studies performed at different laboratories can be consistent. The present protocol identifies six of the organs in the adult Xenopus, demonstrating methods for dissection and sampling of the heart ventricle, liver, fat body, pancreas, paired kidney, and skin of the adult Xenopus. Depending on the preservation methods, the dissected organs can be used for quantitative proteomics, single cell/nuclei transcriptomics, in situ hybridization, immunohistochemistry, histology, etc. This protocol aims to standardize tissue sampling and facilitate multi-lab investigations of the adult organ systems.

???displayArticle.pubmedLink??? 38436453
???displayArticle.link??? J Vis Exp