Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-61016
Int J Mol Sci 2024 Oct 09;2519:. doi: 10.3390/ijms251910840.
Show Gene links Show Anatomy links

3,8-Disubstituted Pyrazolo[1,5-a]quinazoline as GABAA Receptor Modulators: Synthesis, Electrophysiological Assays, and Molecular Modelling Studies.

Crocetti L , Guerrini G , Melani F , Mascia MP , Giovannoni MP .


???displayArticle.abstract???
As a continuation of our study in the field of GABAA receptor modulators, we report the design and synthesis of new pyrazolo[1,5-a]quinazoline (PQ) bearing at the 8-position an oxygen or nitrogen function. All the final compounds and some intermediates, showing the three different forms of the pyrazolo[1,5-a]quinazoline scaffold (5-oxo-4,5-dihydro, -4,5-dihydro, and heteroaromatic form), have been screened with an electrophysiological technique on recombinant GABAAR (α1β2γ2-GABAAR), expressed in Xenopus laevis oocytes, by evaluating the variation in produced chlorine current, and permitting us to identify some interesting compounds (6d, 8a, 8b, and 14) on which further functional assays were performed. Molecular modelling studies (docking, minimization of complex ligand-receptor, and MD model) and a statistical analysis by a Hierarchical Cluster Analysis (HCA) have collocated these ligands in the class corresponding to their pharmacological profile. The HCA results are coherent with the model we recently published (Proximity Frequencies), identifying the residues γThr142 and αHis102 as discriminant for the agonist and antagonist profile.

???displayArticle.pubmedLink??? 39409169
???displayArticle.pmcLink??? PMC11477267
???displayArticle.link??? Int J Mol Sci


Genes referenced: gabarap


???attribute.lit??? ???displayArticles.show???