XB-ART-61513
Cells
2025 Aug 22;1417:. doi: 10.3390/cells14171305.
Show Gene links
Show Anatomy links
Discovery and Functional Characterization of Novel Aquaporins in Tomato (Solanum lycopersicum): Implications for Ion Transport and Salinity Tolerance.
???displayArticle.abstract???
Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and solutes. Among AQPs, plasma membrane intrinsic proteins (PIPs) play a critical role in maintaining water balance between the internal and external cell environments. This study focuses on the tomato due to its economic importance and cultivation under moderate salinity conditions in Japan. A swelling assay using X. laevis oocyte confirmed that all five examined tomato SlPIP2 isoforms showed water transport activity. Among them, two-electrode voltage clamp (TEVC) experiments showed that only SlPIP2;1, SlPIP2;4, and SlPIP2;8 transport Na+ and K+, with no transport activity for Cs+, Rb+, Li+, or Cl-. CaCl2 (1.8 mM) reduced ionic currents by approximately 45% compared to 30 µM free-Ca2+. These isoforms function as very low-affinity Na+ and K+ transporters. Expression analysis showed that SlPIP2;4 and SlPIP2;8 had low, stable expression, while SlPIP2;1 was strongly upregulated in roots NaCl treatment (200 mM, 17days), suggesting distinct physiological roles for these ion-conducting AQPs (icAQPs). These data hypothesized that tomato icAQPs play a critical role in ion homeostasis, particularly under salinity stress. In conclusion, the first icAQPs have been identified in the dicotyledonous crop. These icAQPs are essential for plant resilience under salt stress.
???displayArticle.pubmedLink??? 40940717
???displayArticle.link??? Cells
???displayArticle.grants???